The songs package*

Kevin W. Hamlen
January 31, 2009

Abstract

The songs package produces books of songs that contain lyrics and chords
but not sheet music. Its primary contribution is to allow lyric books, chord
books, and books of overhead slides to all be maintained and generated
from a single IXTEX source document. Additionally, one can automatically
extract a subset of songs in a specified order to create handouts, automat-
ically transpose chords to new keys, and manually create guitar tablature
diagrams.

1 Introduction

The songs KTEX package is designed to produce books of songs that contain lyrics
and (optionally) chords, but not sheet music. By changing only one line of the
IXTEX source document, one can generate a lyric book for singers, a chord book
for musicians, or a book of overhead slides for corporate singing. In addition, for
each one of these book styles, a one-line change to the source document can be
used to extract only certain songs from the book in a specified order. This allows
easy creation of handouts or slide sets from a larger master document.

Religious worship styles are becoming increasingly independent and self-driven
in modern times, and with this trend have come difficult challenges for creating and
maintaining printed material suitable for these venues. Christian denominations,
for example, have seen the rise of the so-called “home church” movement, in which
worshippers meet on a small scale in many different locales that vary from week to
week. This has resulted in worship settings where instrumental accompaniment,
if any, often consists solely of portable instruments like guitars, which typically
play chords rather than full sheet music. In addition, sacred music has become
more contemporary and more fluid than was typical of past eras. Congregations
are less willing to accept a fixed book of songs like a hymnal, and rather prefer to
have a constantly changing repertoire of music to which they can add and remove
songs over time.

Typesetting material suitable for these settings is a challenging endeavor.
Rather than producing a single book that remains static, worship coordinators
must be able to create and maintain evolving collections of music that can be
quickly arranged for specific events or services. Licensing restrictions and printing
costs also make it desirable for these collections to simultaneously exist in multiple

*This document corresponds to songs v2.7, dated 2009/01/08, © 2009 Kevin W. Hamlen, and
distributed under version 2 the GNU General Public License as published by the Free Software
Foundation.

forms—as lyric books, as chord books, and as overhead slides—all of which must
be maintained over time to be consistent with one another.

The songs XTEX package is one attempt at meeting these demands. The TEX
document publishing system allows beautiful documents to be generated mostly
automatically according complex style rules, such as those demanded by poetry
and music. The songs package facilitates the use of IATEX to generate song books
by providing an extensive set of INTEX macros that handle many of the difficult
aspects of arranging songs on a page. These macros ensure that chords remain
placed above appropriate syllables as songs shift position in the book, that songs
will continue to be placed in appropriate locations and with aesthetically pleasing
spacing as song ordering changes, and that book indexes remain updated as new
songs get introduced. In addition, simple facilities for automatically transposing
songs or indexing songs by scripture reference are also provided.

2 Terms of Use

The songs package is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later version.
A copy of the license can be found in §I5]

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License in for
more details. A copy of the license can also be obtained by writing to the Free
Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-
1301, USA.

This software is copyright © 2009 Kevin W. Hamlen. For contact information or
the latest version, see the project webpage at:

http://songs.sourceforge.net

3 Sample Document

The following sections of this document provide a detailed explanation of the
songs package, its usage, and its implementation. However, for those who would
like to start making song books quickly, the following is a sample document that
yields a simple song book with one song and one title index. Starting from this
template, you can begin to add songs and customizations to create a larger book.
Instructions for compiling this sample song book follow the listing.

\documentclass{article}
\usepackage [chorded] {songs}

\newindex{titleidx}{titleidx}
\noversenumbers

\begin{document}
\showindex{Complete Index of Songs}{titleidx}
\songsection{Worship Songs}

http://songs.sourceforge.net

lyric
chorded
slides
rawtext

\begin{songs}{titleidx}
\beginsong{Doxology}[by={Louis Bourgeois and Thomas Ken},
sr={Revelation 5:13},
cr={Public domain.},
index={Praise God, from Whom all blessings flow}]
\beginverse
\[G]Praise God, \[D]from \[Em]Whom \[Bm]all \[Em]bless\[D]ings \[G]flow;
\[G]Praise Him, all \[D]crea\[Em]tures \[Clhere \[G]be\[D]low;
\ [Em]Praise \[D]Him \[Gla\[Dlbove, \[Glye \[Clheav’n\[D]ly \[Em]host;
\[G]Praise Fa\[Em]ther, \[D]Son, \[Am]and \[G/B G/C]Ho\[D]ly \[G]Ghost.
\[CIA\[G]men.
\endverse
\endsong
\end{songs}

\end{document}

To compile this book, you would need to execute three commands. First, use
KTEX (pdflatex is recommended) to compile the document:

pdflatex mybook.tex

(where mybook.tex is the name of the source document above). Next, use the
songidx program provided with this distribution to generate the indexes:

songidx titleidx.sxd titleidx.sbx

Finally, regenerate the document using KTEX so that the newly generated index
data will be included:

pdflatex mybook.tex

The final document will be named mybook. pdf if you use pdflatex or mybook.dvi
if you use regular latex.

A copy of the first page of a sample song section is shown in Figure [1. The
page shown in that figure is from a chorded version of the book. When generating
a lyric version, the chords would be omitted. See §4] for information on how to
generate different versions of the same book.

4 Initialization and Options

Each ETEX document that uses the songs package should contain a line like the
following near the top of the document:

\usepackage [(options)] {songs}
Supported (options) include the following:

Output Type. The songs package can produce four kinds of books: lyric books,
chord books, books of overhead slides, and raw text output. You can specify which
kind of book is to be produced by specifying one of 1yric, chorded, slides, or
rawtext as an option. If none of these are specified, chorded is the default.

Worship Songs

1 Doxology

Revelation 5:13
Louis Bourgeois and Thomas Ken

G D Em BmEmD
Praise God, from Whom all blessings
G
flow;

D Em C GD

Praise Him, all creatures here below;

Em D GD GC D Em

Praise Him a - bove, ye heav’nly host;

G Em D Am

Praise Father, Son, and

I—CI;({B Gi/C 1[}? ghost.
Cc G
A - men.

Public domain.

The LORD is my rock and my fortress
and my deliverer,
my God, my rock, in whom I take
refuge,
my shield, and the horn of my
salvation, my stronghold.
I call upon the LORD, who is worthy to
be praised,
and I am saved from my enemies.

The cords of death encompassed me;
the torrents of destruction assailed
me;
the cords of Sheol entangled me;
the snares of death confronted me.

In my distress I called upon the LORD;
to my God I cried for felp.
From his temple fe heard my voice,
and my cry to him reached his ears.
Psalm 18:2-6

2 A Mighty Fortress Is

Our God

Martin Luther

A C#¥m B7 E

A mighty Fortress is our God,
E7 A
A bulwark never fail -ing.
C#m B7 E
Our helper He, amid the flood
E7A
Of mortal ills prevailing.
B7sus4 B7 E
For still our an - cient foe

A E/GF F#m

Doth seek to work us woe;
E
His craft and pow’r are great,
m c#
And, armed with cruel hate,

A E7 A

On earth is not his e - qual.

A C#m B7 E

Did we in our own strength confide,

A E7 A

Our striving would be los - ing.

C#m B7 E

Were not the right Man on our side,

D A E7 A
The Man of God’s own choosing.

B7sus4 B7 E
Dost ask who that may b

A E/GF . F#m
Christ Jesus, it is He;

B7 E
Lord Sabaoth His Name,
C#

m
From age to age the same;

D A E7 A
And He must win the bat-tle.

Public Domain.

Figure 1: Sample page from a chord book

\chordson
\chordsoff

\slides

nomeasures
showmeasures

\measureson
\measuresoff

transposecapos

noindexes
\indexeson
\indexesoff

nopdfindex

onesongcolumn
twosongcolumns
\songcolumns

Lyric books omit all chords, whereas chord books include chords and addi-
tional information for musicians (specified using . Books of overhead
slides omit all chords like lyric books, but they typeset one song per page in a
large font, centered.

Raw text output doesn’t produce songs in the output document at all. Instead,
when raw text output is selected, an ascii text file named (jobname).txt (where
(jobname) is the filename given by \jobname) will be generated in the style of a
lyric book. This can be useful for importing song books into another program,
such as a spell-checker.

In addition to using the lyric and chorded options to turn chords on or off
at the beginning of the document, chords can also be turned on or off anywhere
in the middle of the document by using the \chordson or \chordsoff macros.

In addition to using the slides option to produce an entire book of overhead
slides, one can also activate slides mode using the \slides command. For best
results, this should typically only be done in the document preamble or at the
beginning of a fresh page.

Measure Bars. Even though the songs package does not support generation of
full sheet music, it does include a facility for placing measure bars in addition to
chords in chord books. To omit these measure bars, use the nomeasures option.
To display measure bars, use the showmeasures option. (This is the default.)
Measure bars can also be turned on or off in the middle of the document by using
the \measureson or \measuresoff macros.

Transposition. The transposecapos option changes the effect of the
macro. Normally, using \capo{(n)} within a song environment produces a textual
note in chord books that suggests the use of a guitar capo on fret (n). However,
when the transposecapos option is active, these textual notes will be omitted and
instead the effect of \capo{(n)} will be the same as for \transposel{(n)}. That
is, chords between the macro and the end of the song will be automatically
transposed up by (n) half-steps. This can be useful for adapting a chord book for
guitarists to one that can be used by pianists, who don’t have the luxury of using
a capo. See §7.6] and for more information on the \capo and \transpose
macros.

Indexes. The noindexes option suppresses the typesetting of any in-document
indexes. Display of indexes can also be turned on or off using the \indexeson and
\indexesoff macros. If indexes are off by the time the \begin{document} line is
reached, then not only are in-document indexes not displayed, the auxiliary data
files that are used to create them will not be generated either.

The nopdfindex option suppresses the creation of the pdf bookmark index
that is normally included in .pdf files. If not generating a .pdf file, this option
has no effect.

Columns. By default, songs in a environment will be typeset in two
columns per page. To force one column per page, you can use the onesongcolumn
option. To force the default of two columns per page, use the twosongcolumns
option. The \songcolumns{(n)} macro can be used anywhere outside of [songs]
environments to cause songs to be typeset in (n) columns per page (where (n)

noscripture

\scriptureon
\scriptureoff

noshading

\includeonlysongs

\songsection

\songchapter

is any positive integer). Setting the number of columns to 1 will cause indexes
to be typeset in a single column as well; otherwise indexes will be typeset in the
index-default number of columns.

Scripture Quotations. The noscripture option omits scripture quotations
(see from the output.

You can also turn scripture quotations on or off in the middle of the document
by using \scriptureon or \scriptureoff, respectively.

Shaded Boxes. The noshading option causes all shaded boxes, such as those
that surround song numbers and textual notes, to be omitted. You might want to
use this option if printing such shaded boxes causes problems for your printer or
uses too much ink.

Partial Song Sets. Often it is useful to be able to extract a subset of songs from
the master document—e.g. to create a handout or set of overhead slides for a spe-
cific worship service. To do this, you can type \includeonlysongs{(songlist)} in
the document preamble (i.e. before the \begin{document} line), where (songlist)
is a comma-separated list of the song numbers to include in the resulting docu-
ment. For example, suppose your song book contains three song sections, one in
which the songs are numbered with regular arabic numbers, one in which songs
are numbered H1, H2, etc., and one in which songs are numbered C1, C2, etc.
Then if you put

\includeonlysongs{37,H2,2,C4,H1}

in the preamble of your document, the first song section of the resulting document
would contain only songs 37 and 2 (in that order), the second section would have
only songs H2 and H1 (in that order), and the final section would have only song
CA4.

Partial books generated with \includeonlysongs will omit all scripture quo-
tations (§8)), and will ignore uses of the macro. To force a column-break
at a specific point in a partial book, add the word nextcol at the corresponding
point in the (songlist) argument. To force a page-break, use consecutive column-
breaks.

The \includeonlysongs macro cannot be used in conjunction with the

document option.

5 Book Sections

Section Titles. Section titles in a song book can be produced with
\songsection{(title)}

which acts like BTEX’s \section command except that it centers the (title) text
in sans serif font and omits the section number without excluding the section from
indexes or tables of contents. Authors can redefine the \songsection command
to affect the titles of index sections (see below).

When using the book document class, you can use \songchapter instead of
\songsection to start a new chapter. Likewise, you can redefine \songchapter
instead of \songsection to affect the titles of indexes (see below).

\newauthorindex
\newindex
\newscripindex

\showindex

Indexes. The songs in song sections can be itemized in indexes whose contents
are generated automatically. To generate an index, first declare the index in
the document preamble (i.e. before the \begin{document} line) with one of the
following:

\newindex{(id)}{(filename)}
\newauthorindex{(id)}{(filename)?}
\newscripindex{(id)}{(filename)}

which declare an index that will be sorted by song title, an index that will be sorted
by author, or an index that will be sorted by scripture references, respectively. (id)
should be an alphabetic identifier that will be used to identify the index in other
macros that reference it. (filename) should be a string that, when appended with
an extension, constitutes a valid filename on the system. Auxiliary files named
(filename) . sxd and (filename) . sbx will be generated during the automatic index
generation process.
To display an index that was declared in the preamble, use:

\showindex{(title)}{(id)}

where (id) is the same identifier used in the \newindex| [\newauthorindex| or
[\newscripindex|command, and where (title) is the title of the index, which should
consist only of simple text suitable for inclusion in the pdf bookmark index. This
will display the complete index starting on a fresh page, including its automatically
generated contents.

6 Compiling

As with a typical WTEX document, compiling a song book document requires three
steps. First, use WTEX (pdflatex is recommended) to generate auxiliary files from
the .tex file:

pdflatex mybook.tex

Second, use the songidx program to generate an index for each index that you
declared with \newindex| \newauthorindex] or \newscripindex| The syntax of
the songidx command is:

songidx [-b (canon).can] (filename).sxd (filename).sbx

where (filename) is the same (filename) that was used in the
\newauthorindex} or \newscripindex| macro. If the index was declared with

Nnewscripindex] then the -b option is used to specify which version of the bible
you wish to use as a basis for sorting your scripture index. The (canon) part
can be any of the .can files provided with the songidx distribution. If you are
using a Protestant, Catholic, or Greek Orthodox Christian bible with book names
in English, then the bible.can canon file should work well. If you are using a
Jewish Tanakh, use tanakh.can. For other bibles, you should create your own
.can file by copying and modifying one of the existing .can files.
For example, if your song book .tex file contained the lines

Nnewindex{titleidx}{titlfile}
[\newauthorindexl{authidx}{authfile}
[\newscripindexf{scripidx}{scrpfile}

songs

\beginsong
\endsong

then the commands to generate indexes sorted according to a Christian English
bible would be:

songidx titlfile.sxd titlfile.sbx

songidx authfile.sxd authfile.sbx

songidx -b bible.can scrpfile.sxd scrpfile.sbx

Once the indexes are generated, you can generate the final book by invoking
ITEX one more time:

pdflatex mybook.tex

7 Songs

Song Sets. Songs are contained within songs environments. Each such envi-
ronment begins and ends with:

\begin{songs}{(indexes)}

kend{songs}

(indexes) is a comma-separated list of index identifiers (the (id)’s specified with
—one identifier for each index that is to include entries for songs in this
song set. Between the \begin{songs} and \end{songs} lines of a song section
can appear only songs (see below) or scripture quotations (see . No text in a
songs environment can lie outside of a song or scripture block.

Songs. A song begins and ends with:
\beginsong{(titles)} [{otherinfo)]

\endsong

Songs should appear within environments (see above). If they do not, the
vertical material comprising the song will be output directly to the current vertical
list, and it is up to the enclosing environment to provide suitable page-breaking
and other formatting.

In the line, (titles) can be either a single song title or multiple
song titles separated by \\. If multiple titles are provided, the first is typeset
normally atop the song and the rest are each typeset in parentheses on separate
lines. An index entry will be generated for each of these song titles, and it will be
added to each title index associated with the current environment.

The (otherinfo) is optional; it and its surrounding brackets ([1) can be omit-
ted. If provided, it is a comma-separated list of key-value pairs (keyvals) of the
form (key)=(value). Each keyval provides some information about the song. The
possible keys and their values are:

by={({authors)} cite authors, composers, and other contributors
cr={(copyright)} provide copyright information

li={(license)} provide licensing information

sr={(refs)} list related scripture references
index={(lyrics)} add an index entry consisting of a line of lyrics
ititle={(title)} add an index entry for an alternate title

by=

cr=

1li=
\setlicense

For example, a song that begins and ends with

\beginsong{Titlel \\ Title2}[by={Joe Smith}, sr={Job 3},
cr={\copyright~2009 XYZ.}, li={Used with permission.}]
\endsong

will look like

1 Titlel
(Title2)

Job 3
Joe Smith

© 2009 XYZ. Used with permission.

The four keyvals used in the above example are described in detail in the
remainder of this section; the final two are documented in §7.7} You can also

create your own keyvals (see §12.2)).

Song Authors. The authors of a song can be specified with the keyval
by={(authors)}, where (authors) are one or more authors, composers, transla-
tors, etc. An entry will be added to each author index associated with the current
environment for each contributor listed. Contributors are expected to be
separated by commas, semicolons, or the word and. For example:

by={Fred Smith, John Doe, and Billy Bob}

Copyright Info. Copyright info for a song is provided by cr={(copyright)},
where (copyright) is material that identifies the copyright-holder of the song, if
any. This typically begins with the © symbol produced with \copyright. For
example:

cr={\copyright~2000 ABC Songs, Inc.}

Note that licensing information that typically appears immediately after the copy-
right info is not usually included here. That information is typically set with the
1i= keyval (see below). Copyright information will be typeset in fine print at the
bottom of the song text.

Licensing Info. Licensing information citing the terms of your lawful use of a
song is provided by li={(license)}, where (license) is typically material that a
copyright administrator requires licensees to place near each song covered by the
license. Licensing information will be displayed in fine print under the song just af-
ter the copyright information (if any). Writing \setlicense{(license)} anywhere
between the \beginsong|and [\endsong|lines is equivalent to using 1i={(license)}
in the line.

Since many songs in a book are often covered by the same license, it is usually
convenient to create a macro to abbreviate the licensing information. For exam-
ple, if your organization has a music license from Christian Copyright Licensing
International with license number 1234567, you might define a macro like

\newcommand{\CCLI}{ (CCLI \#1234567)%}

Then you could write 1i=\CCLI in the line of each song covered by
CCLI.

sSr=

\nextcol

\beginverse
\endverse
\beginchorus
\endchorus

(refs) — (nothing) | (ref);u(ref);. . .5 u(ref)
(ref) — {many-chptr-book) (chapters) | {one-chptr-book) {verses)

(one-chptr-book) — Obadiah | Philemon |2 John|3 John|Jude
(chapters) — (chref),(chref),...,u{chref)

)
)
(many-chptr-book) — Genesis | Exodus | Leviticus | Numbers |...
)
)
(chref) — (chapter) | (chapter)-(chapter) | (chapter): (verses) |

(chapter) : (verse)—(chapter) : (verse)
(verses) — (vref), (vref) ,. .., (vref)
(vref) — (verse) | (verse)-(verse)

Figure 2: Formal syntax rules for song scripture references

Scripture References. The songs package has extensive support for scripture
citations and indexes of scripture citations. To cite scripture references for the
song, use the keyval sr={(refs)}, where (refs) is a list of scripture references.
Index entries will be added to all scripture indexes associated with the current
environment for each such reference. The songidx index generation pro-
gram expects (refs) to be a list of references in which semicolons are used to
separate references to different books, and commas are used to separate references
to to different chapters and verses within the same book. For example, one valid
scripture citation would be

sr={John 3:16,17, 4:1-5; Jude 3}

The full formal syntax of a valid (refs) argument is given in Figure In
those syntax rules, (chapter) and (verse) are arabic numbers denoting a valid
chapter number for the given book, and a valid verse number for the given chapter,
respectively. Note that when referencing a book that has only one chapter, one
should list only its verses after the book name (rather than 1:(verses)).

Column Breaks. The \nextcol macro can be used within a environ-
ment to force a column break. It should only appear between songs or scripture
quotations. If the set is being typeset in one column, \nextcol forces a page break
instead of a column break. When a partial list of songs is being extracted with
[\includeonlysongs| all \nextcol macros will be ignored.

7.1 Verses and Choruses

Starting A Verse Or Chorus. Between the [\beginsong| and [\endsong| lines
of a song can appear any number of verses and choruses. A verse begins and ends
with:

\beginverse

\endverse

and a chorus begins and ends with:

\beginchorus
\endchorus

10

\repchoruses

\norepchoruses

\brk

Verses are numbered (assuming [\noversenumbers|has not been used to suppress
verse numbering) whereas choruses have a vertical line placed to their left.

You can also begin a verse with \beginversex instead of \beginverse to
create an unnumbered verse. This is often used for things that aren’t really verses
but should be typeset like a verse (e.g. intros, endings, and the like). A verse that
starts with \beginverse* should still end with \endverse (not \endversex).

Within a verse or chorus you should enter one line of text for each line of lyrics.
The environment of a verse or chorus behaves as though \obeylines is active, so a
line break in the source document produces a line break in the resulting document.
Lines that are too long to fit will be wrapped with a hanging indentation equal to
\parindent.

Repeating Choruses. When making overhead slides, it is often convenient to
repeat the song’s chorus once on each page, so that the projector-operator need
not flip back to the first slide each time the chorus is to be sung. You can say
\repchoruses to automate this process. This will cause the first chorus in each
song to be automatically repeated after the first verse on each subsequent page of
the song (unless that verse is already immediately followed by a chorus). If the
first chorus is part of a set of two or more consecutive choruses, then the whole set
of choruses will be repeated. (A set of choruses is assumed to consist of things like
pre-choruses that should always be repeated along with the chorus.) Choruses will
not be automatically inserted immediately after unnumbered verses (i.e., verses
that begin with) Unnumbered verses are assumed to be bridges
or endings that aren’t followed by a chorus.

The above heuristics cover the common cases, but they obviously don’t cover
every case. Some songs have more complex forms that don’t fit the typical verse,
chorus, verse, chorus pattern. The feature will not always be able
to automatically insert choruses properly in these unusual cases. The best al-
ternative is usually a manual approach. Before a song with irregular form, say
\norepchoruses to turn automatic chorus-repeating off. Then, at points within
the song where you want a chorus to be repeated on the overhead slides, type a
construction like,

Nifslides

\fi

and copy and paste the desired chorus into the middle. This will insert a repeated
chorus at that point when generating slides, but not when generating a lyric book
or chord book. After the song is concluded, type

[\ifslides\repchoruses\fi

to turn automatic chorus-repeating back on, if desired.

Line Breaking. When lines of lyrics are too wide to fit in a single line, TEX
will automatically choose a reasonable place to break the line, wrapping it onto
the next physical line of the document. However, sometimes it is desirable to
specifically choose where TEX will break a long line so as to make it easier to

11

read and sing. By placing a \brk macro within a line of lyrics, you can determine
where TEX will break and wrap that line if it is too wide to fit in a single line of
the resulting song book document. For example,

\beginverse

This is a \brk short line.

But this is a particularly long line of lyrics \brk that will
need to be wrapped.

\endverse

would produce
This is a short line.
But this is a particularly long line of lyrics
that will need to be wrapped.

Column and Page Breaking. The \brk macro can also be used on a line by
itself within a verse or chorus to suggest a page or column breakpoint if the verse
or chorus is too long to fit in a single column. By default, the songs package will
avoid inserting column- or page-breaks into the middle of verses and will never
insert one into the middle of a chorus that is typeset with a vertical bar. When
such a break is unavoidable, the package code will try to break the verse or chorus
at a line where \brk appears by itself. If there are no \brk lines in a long verse,
it will be broken somewhere that a line does not wrap. (A wrapped line is never
divided by a column break.) If there are no \brk lines in a long chorus, it will
overflow the column, yielding an overfull vbox warning.

7.2 Chords

Between the \beginverse| and \endverse| lines, or between the
and lines, chords can be produced using the macro \ [{chordname)].
Chords will only appear in chord books. The (chordname) can consist of arbitrary
text. To produce sharp and flat symbols, use # and & respectively.

Any text that immediately follows the \ []1 macro with no intervening whites-
pace will assumed to be the word or syllable that is to be sung as the chord is
struck, and will therefore be typeset directly under the chord. For example:

EP Am
\ [E&]peace and \[Am]joy produces peace and joy

If whitespace (a space or end-of-line) immediately follows, then the chord name
will be typeset without any lyric text below it, denoting that the chord is to be
struck between any surrounding words. For example:

Eb Am
\[E&]peace and \[Am] joy produces peace and joy

If the lyric text that immediately follows the chord ends with another chord,
and if the width of the chord name exceeds the width of the lyric text, then
hyphenation is added automatically. For example:

F#sus4 A
\ [F#sus4]e\ [Al ternal produces e - ternal

12

\DeclareLyricChar

Sequences of chords that sit above a single word can be written back-to-back
with no intervening space, or as a single chord:

A BEm
\[AJ\ [B]\ [Em] joy produces joy

A BEm
\[A B Em]joy produces joy

The only difference between the two examples above is that the chords in the
first example can later be replayed separately (see §7.3) whereas the chords in the
second example can only be replayed as a group.

You can explicitly dictate how much of the text following a chord macro is
to appear under the chord name by using braces. To exclude text that would
normally be drawn under the chord, use a pair of braces that includes the chord
macro. For example:

{\[G Ale}ternal produces e - ternal

(Without the braces, the syllables “ternal” would not be pushed out away from
the chord.) This might be used to indicate that the chord transition occurs on the
first syllable rather than as the second syllable is sung.

Contrastingly, braces that do not include the chord itself can be used to include
text under a chord that would otherwise be excluded. For example:

Gmaj7sus4
\ [Gmaj7sus4]{th’ eternal} produces th’ efernal
Without the braces, the word “eternal” would be pushed out away from the chord
so that the chord would appear only over the partial word “th’”. But since in
this case the words “the eternal” are supposed to be sung together as a single
three-syllable word (as indicated by the apostrophe), it is proper for the chord to
span both words together.

Symbols Under Chords. If you are typesetting songs in a language whose
alphabet contains symbols that IATEX treats as punctuation, you may find yourself
typing a lot of braces to get those symbols to appear properly under chords.
Fortunately, there is a short-cut that can make this a lot easier. The following
command instructs the the songs package to treat a given macro or token as
non-chord-ending, so that it will by default be included under chords just like an
alphabetic character.

\DeclareLyricChar{(token)}

Here, (token) must be a single TEX macro control sequence, active character,
letter (something TEX assigns catcode 11), or punctuation symbol (something
TEX assigns catcode 12). For example, by default,

Fmaj7
\[Fmaj7]s\dag range produces s = frange

because \dag is not recognized as an alphabetic symbol; but if you first type,
\DeclareLyricChar{\dag}

then instead you will get:

13

\DeclareNonLyric

\DeclareNoHyphen

\MultiwordChords

\shrp
\flt

Fmaj7
\[Fmaj7]s\dag range produces sfrange

Likewise, you can type
\DeclareNonLyric{(token)}

to reverse the above effect and force a token to be lyric-ending. Such tokens will
be pushed out away from long chord names so that they never fall under a chord,
and hyphenation will be added to the resulting gap.

To declare a token to be lyric-ending but without the added hyphenation, use
\DeclareNoHyphen{(token)} instead. Such tokens will be pushed out away from
long chord names so that they never fall under the chord, and hyphenation will
not be added to the resulting gap.

Extending Chords Over Adjacent Words. The \MultiwordChords macro
forces multiple words to be squeezed under one chord by default. Normally a long

chord that sits atop a short lyric pushes subsequent lyrics away to make room for
the chord:

Gmaj7sus4
\ [Gmaj7sus4]my life produces my life

But if you first type \MultiwordChords, then instead you will get the more com-
pact:

Gmaj7sus4
\ [Gmaj7sus4]my life produces my lite
Authors should exercise caution when using \MultiwordChords because including
many words under a single chord can often produce output that is ambiguous or
misleading to musicians. For example,

FGAm

\[F G Amlme free produces me free

This is probably not what the author intended. The three chords were all supposed
to be played while singing the word “me”, but the output makes it look like some
chords fall on the following word “free”. Liberal use of braces is therefore required
to make \MultiwordChords produce good results, which is why it isn’t the default
behavior.

Accidentals Outside Chords. Sharp and flat symbols can be produced with
and & when they appear explicitly in a chord name, but if you wish to produce
those symbols in other parts of the document, you must use the \shrp and \flt
macros. For example, to define a macro that produces a c# chord, use:

\newcommand{\Csharp}{C\shrp}

7.3 Replaying Chords

Many songs consist of multiple verses that use the same chords. The songs package
simplifies this common case by providing a means to replay the chord sequence
seen in a previous verse without having to retype all the chords. To replay a chord

14

\memorize

from a previous verse, type a hat symbol (~) anywhere you would otherwise use a
chord macro (\[1). For example,
\[G]This is the \[Clfirst \[G]verse.

The “second verse ~ has the same ~“chords.

would produce

G C
This is the first verse.

The second verse has the same chords.

Normal chords can appear amidst replayed chords without disrupting the se-
quence of chords being replayed. Thus, a third verse could say,

beginverse
The “third verse “has a \[Cmlnew “chord.

Nendverse

to produce

C CmG
The third verse has a new chord.

Replaying works particularly well in conjunction with automatic transposition.
See §I0] for an example.

By default, chords are replayed from the current song’s first verse, but you
can replay the chords of a different verse or chorus by saying \memorize at the
beginning of any verse or chorus whose chords you want to later replay. This causes
the chord sequence of the current verse or chorus to be memorized. Subsequent
verses or choruses within the same song can use ~ to replay the new sequence.

Selective Memorization. It is also possible to inject unmemorized chords into
a memorized verse so that they will not be replayed. To suppress memorization
of a chord, begin the chord’s name with a hat symbol. For example,

[\beginverse\memorize|
The \[G]third \[C]lchord will \["Cmlnot be re\[G]lplayed.

When “replaying, the “unmemorized chord is “skipped.

Nendversel

would produce

G C . Cm G
The third chord will not be replayed.

G G
When replaying, the unmemorized chord is skipped.

This is useful when the first verse of a song has something unique, like an intro
that won’t be repeated in subsequent verses, but has other chords that you wish
to replay.

15

\newchords

\replay

\echo

\rep

\1lrep
\rrep

\measurebar

Memorizing Multiple Chord Sequences. By default, the songs package only
memorizes one sequence of chords at a time; using to memorize a new
sequence causes any previously memorized sequence to be forgotten. However,
you can memorize and replay multiple independent sequences using the macros
described in the following paragraphs.

Memorized or replayed chord sequences can be stored in specific chord-replay
registers. To declare a new chord-replay register, type

\newchords{(regname)}

where (regname) is a unique alphabetic identifier.
Once you’ve declared a register, you can memorize into that register by pro-

viding the (regname) as an optional argument to
emorzdl(regname)]

Memorizing into a non-empty register replaces the contents of that register with
the new chord sequence.
To begin replaying chords from a particular register, type

\replay [(regname)]
Chord sequences memorized into registers declared with are global,

which means you can memorize a chord sequence from one song and replay it in
subsequent songs. You can also use \replay multiple times in the same verse or
chorus to replay a sequence more than once.

7.4 Echoes and Repeats

Echo Parts. Some songs contain echo parts that should be typeset differently
from normal lyrics. To typeset an echo part, use \echo{(lyrics and chords)}. Echo
parts will be parenthesized and italicized. For example,

G A
Alle\[G]1luia! \echo{Alle\[A]luia!} produces Alleluia! (Alleluia!)

Repeated Lines. In other cases you might want to indicate that a line should
be sung multiple times by all singers. To do so, put \rep{(n)} at the end of the
line, where (n) is the number of times the line is to be repeated. For example,

Alleluia! \rep{4} produces Alleluial (%X4)

To indicate exactly where repeated parts begin and end, use \1rep and \rrep
to create begin- and end-repeat signs. For example,

G :
\lrep \[G]Alleluia!\rrep \rep{4} produces ‘:Alleluia!: (X4)

7.5 Measure Bars

Measure bars can be added to chord books in order to help musicians keep time
when playing unfamiliar songs. To insert a measure bar, type either \measurebar
or type the vertical pipe symbol (“|”). For example,

16

\meter

\mbar

\textnote
\musicnote

\capo

G
Allel\[G]1luia produces Alle‘luia

In order for measure bars to be displayed, the option must be
enabled. Measure bars are only displayed by default in chord books.

The first measure bar in a song will have meter numbers placed above it to indi-
cate the time signature of the piece. By default, these numbers will be 4/4, denot-
ing four quarter notes per measure. To change the default, type \meter{(n)}{(d)}
somewhere after the \beginsong]line of the song but before the first measure bar,
to declare a time signature of (n) (d)th notes per measure.

You can also change meters mid-song either by using \meter in the middle
of the song or by typing \mbar{(n)}{(d)} to produce a measure bar with a time
signature of (n)/(d). For example,

\meter{6}{8}

\beginverse

|Sing to the |heavens, ye \mbar{4}{4}saints of |old!

\endverse

would produce

?Sing to the ‘heavens7 ye Laints of le!

7.6 Textual Notes

Aside from verses and choruses, songs can also contain textual notes that provide
various helpful instructions to singers and musicians. To create a textual note that
will be displayed in both lyric books and chord books, use:

\textnote{(text)}

To create a textual note that will be displayed only in chord books, use:
\musicnote{(text)}

Both of these will create a shaded box containing (text). For example,
\textnote{Sing as a two-part round.}

would produce

Sing as a two-part round.

Textual notes can be placed anywhere within a song, either within verses and
choruses or between them.

Guitar Capos. One special kind of textual note suggests to guitarists which
fret they should put their capo on in order to put the song in a good key for
singing. Macro \capo{(n)} should be used for this purpose. It normally has the
same effect as capo (n)}; however, if the [transposecapos|option is
active, then it will instead have the effect of \transposef{(n)}. See §10| for more

information on automatic chord transposition.

17

index=

ititle=

\indexentry
\indextitleentry

7.7 Index Entries

Every song automatically gets entries in the current section’s title index(es) for
every title specified in the song’s line. However, you can also add

extra index entries for a song to any index.

Indexing Lyrics. For example, title indexes often have entries for memorable
lines of lyrics in a song in addition to the song’s title. You can add an index entry
for the current song to the section’s title index(es) by adding index={{lyrics)} to

the song’s line. For example,
NbegTmsongDorology}

[index={Praise God from Whom all blessings flowl}]

would cause the song to be indexed both as “Dozxology” and as “Praise God from
Whom all blessings flow” in the section’s title index(es). You can use index=
multiple times in a line to produce multiple additional index entries.
Index entries produced with index={(lyrics)} will be typeset in an upright font
instead of in italics to distinguish them from song titles.

Indexing Extra Song Titles. To add a regular index entry typeset in italics
to the title index(es), use:

ititle={(title)}
in the[\beginsong|line instead. Like[index= keyvals, ititle= can be used multiple

times to produce multiple additional index entries.

You can also create index entries by saying \indexentry [(indexes)]{{lyrics)}
(which creates an entry like [index=) or \indextitleentry [(indexes)]{(title)}
(which creates an entry like . These two macros can be used anywhere
between the song’s [\beginsong| and [\endsong| lines, and can be used multiple
times to produce multiple entries. Without the optional (indezes) argument, the
new entry is added to all of the title indexes for the current environment.
If specified, (indezes) is a comma-separated list of index identifiers.

7.8 Chords in Ligatures

This subsection covers an advanced topic and can probably be skipped by those
creating song books for non-professional use.

The [\ macro is the normal means by which chords should be inserted into a
song; however, a special case occurs when a chord falls within a ligature. Ligatures
are combinations of letters or symbols that TEX normally typesets as a single font
character so as to produce cleaner-looking output. The only ligatures in English
are: ff, fi, fl, fli, and fl. Other languages have additional ligatures like & and ce.
Notice that in each of these cases, the letters are “squished” together to form a
single composite symbol.

Normally, producing a ligature like “ffi” in TEX is easy: if you type
“difficult” in your document, TEX will observe the letters £fi occurring in
sequence, change them into a ligature, and produce “difficult” in the resulting
document. But when a chord falls within a ligature, that process breaks down.
For example, if you type \ [Gsus4]dif\ [G]ficult, then TEX produces “difficult”
instead of difficult even in the unchorded lyric book. (The difference between the

18

\ch

\mch

\beginscripture
\endscripture

two is subtle, so you have to look closely to see it. Notice that there is a break
between the f’s in the first instance that isn’t present in the second.)

To place a chord within a ligature without breaking the ligature, use the \ch
macro, which functions a lot like TEX’s \discretionary macro does for hyphen-
ation. The syntax is:

\ch{(chord) Y (pre) X (post) H (full)}

where (chord) is the chord text, (pre) is the text to appear before the hyphen if
the ligature is broken by auto-hyphenation, (post) is the text to appear after the
hyphen if the ligature is broken by auto-hyphenation, and (full) is the full ligature
if it is not broken by hyphenation. If the ligature is broken by auto-hyphenation,
the (pre) text falls before the chord and the (post) text falls under the chord. If
the ligature is not broken by auto-hyphenation, the chord text appears over the
middle of the (full) text.

So for example, to correctly typeset \ [Gsus4]dif\ [G]ficult, in which the G
chord falls in the middle of the “ffi” ligature, one should use:

G
di\ch{GHfHfi}{ffi}cult produces difficult

This causes the “fi” ligature to appear intact yet still correctly places the G chord
over the second f. To use the \ch macro with a replayed chord name (see ,
use " as the (chord).

The \mch macro is exactly like the macro except that it also places a
measure bar into the ligature along with the chord. For example,

G
di\mch{G}HEfHfit{ffitcult produces di]Jﬁcult

places both a measure bar and a G chord after the first “f” in “difficult”, yet cor-
rectly produces an unbroken “ffi” ligature in copies of the book in which measure
bars are not displayed.

In the unusual case that a meter change is required within a ligature, this can
be achieved with a construction like:

G
\meter{6}{8}di\mch{GHEI{fiHffi}tcult produces difiﬁcult

The macro sets the new time signature, which appears above the next
measure bar—in this case the measure bar produced by the \mch macro.

Chords and measure bars produced with [7] or [I] are safe to use in ligatures.
So dif[[[Jficult requires no special treatment; it leaves the “ffi” ligature intact
when measure bars are not being displayed.

8 Scripture Quotations

Aside from songs, [songs| environments (see can also include scripture quota-
tions.

Starting a Scripture Quotation. A scripture quotation begins and ends with

\beginscripture{(ref)}
\endscripture

19

where (ref) is a scripture reference that will be typeset at the end of the quotation.
The (ref) argument should conform to the same syntax rules as for the (ref)
arguments passed to macros (see %

Between the \beginscripture and \endscripture lines, the text of the scrip-
ture quote should follow, which will be parsed in normal paragraph mode. For
example:

\beginscripture{James 5:13}

Is any one of you in trouble? He should pray. Is anyone happy?
Let him sing songs of praise.

\endscripture

would produce

Is any one of you in trouble? He should
pray. Is anyone happy? Let him sing
songs of praise. James 5:13

Tuplets. If you are typesetting biblical poetry instead of prose, some extra con-
structs are required to typeset the text the way it appears in most bibles. Biblical
poetry consists of tuplets—usually couplets and occasionally a triplet. The first
line of each tuplet, called the “A-colon”, is typeset flush with the left margin, while
each additional line of the tupet, called the “B-colon”, “C-colon”, etc., is indented
from the left margin. Any lines too long to fit are wrapped with double-width
hanging indentation.

\Acolon You can produce this style of output by beginning the first line of a tuplet

\Bcolon with an \Acolon macro and each additional line with a \Bcolon macro. Each line
of the tuplet will then appear on its own line in the resulting scripture quotation,
with proper indentation and line wrapping. For example,

\beginscripture{Psalm 1:1}

\Acolon Blessed is the man

\Bcolon who does not walk in the counsel of the wicked
\Acolon or stand in the way of sinners

\Bcolon or sit in the seat of mockers.

\endscripture

would produce

Blessed is the man
who does not walk in the counsel
of the wicked
or stand in the way of sinners
or sit in the seat of mocKers.
Psalm 1:1

\strophe Stanzas. Biblical poetry is often grouped into stanzas or “strophes”, each of
which is separated from the next by a small vertical space. You can create that
vertical space by typing \strophe. For example,

20

\scripindent
\scripoutdent

\beginscripture{Psalm 88:2-3}

\Acolon May my prayer come before you;
\Bcolon turn your ear to my cry.

\strophe

\Acolon For my soul is full of trouble
\Bcolon and my life draws near the grave.
\endscripture

would produce

May my prayer come before you;
turn your ear to my cry.

For my soulis full of trouble
and my life draws near the grave.
Psalm 88:2-3

Indented Blocks. Some bible passages, such as those that mix prose and po-
etry, contain indented blocks of text. You can increase the indentation level
within a scripture quotation by using \scripindent and decrease it by using
\scripoutdent. For example,

\beginscripture{Hebrews 10:17-18}

Then he adds:

\scripindent

\Acolon ‘‘Their sins and lawless acts

\Bcolon I will remember no more.’’

\scripoutdent

And where these have been forgiven, there is no longer any
sacrifice for sin.

\endscripture

would produce

Then he adds:
“Their sins and lawless acts
I will remember no more.”
And where these have been forgiven,
there is no longer any sacrifice for sin.
Hebrews 10:17-18

9 Tablature Diagrams

\gtab Guitar tablature diagrams can be created by using the construct

\gtab{(chord)}{(fret) : (strings): (fingering)}

where the (fret) and (fingering) parts are both optional (and you can omit any
colon that borders an omitted argument).

(chord) is a chord name to be placed above the diagram.

(fret) is usually omitted, but if the top row of the diagram is intended to
represent a fret other than the first one, then (fret) should be the number of the
fret it represents (any number from 2 to 9).

21

\transpose

(strings) should be a series of six symbols, one for each string of the guitar
from lowest pitch to highest. Each symbol should be one of: X if that string is not
to be played, 0 (zero or the letter O) if that string is to be played open, or one
of 1 through 4 if that string is to be played on the given numbered fret. If X is
used, that string will have an x placed above it in the tablature diagram. If 0 is
used, that string will have an o placed above it in the tablature diagram. If one of
1 through 4 is used, that string will have a e placed on it in the given numbered
fret row of the diagram.

(fingering) should either be empty if no fingering information is to be given,
or it should likewise consist of a series of six symbols, one for each string of the
guitar from lowest pitch to highest. Each symbol should be one of: 0 if no fingering
information is to be displayed for that string (e.g., if the string is not being played
or is being played open), or one of 1 through 4 to indicate that the given numbered
finger is to be used to hold down that string. If (fingering) is provided, fingering
numbers will be shown below each string of the resulting tablature diagram.

Here are some examples to illustrate:

A
X0 o
\gtab{A}{X02220:001230} produces (X 1)
123
C#sus4
XX
\gtab{C#sus4}{4:XX3341} produces % in]
0
Bb
Te ®
\gtab{B&}{X13331} produces

10 Automatic Transposition

You can automatically transpose some or all of the chords in a song up by (n)
half-steps by adding the line

\transpose{(n)}

somewhere between the song’s line and the first chord to be trans-
posed. For example, if a song’s first chord is \ [D], and the line \transpose{2}
appears before it, then the chord will appear as an E in the resulting document.
Specifying a negative number for (n) will transpose subsequent chords down in-
stead of up.

The \transpose macro will affect all chords appearing after it until the
line. If two \transpose macros appear in the same song, their effects
will be cumulative.

When the [transposecapos| option is active, the macro acts like
\transpose. See for more information.

22

\preferflats
\prefersharps

\trchordformat

\solfedge
\alphascale

\notenames

Enharmonics. When using to automatically transpose the chords
of a song, the songs package code will choose between enharmonically equivalent
names for “black key” notes based on the first chord of the song. For example,
if \transpose{1} is used, and if the first chord of the song is an E, then all A
chords that appear in the song will be transcribed as BP chords rather than A%
chords, since the key of Frmajor (E transposed up by one half-step) has a flatted
key signature. Usually this guess will produce correct results, but if not, you can
use either \preferflats or \prefersharps after the line to force all
transcription to use flatted names or sharped names respectively, when resolving
enharmonic equivalents.

Modulated Verses. Automatic transposition can be used in conjunction with
chord-replaying (see §7.2) to produce modulated verses. For example,

[\beginverse\memorize|
\ [F#]This is a \[B/F#]memorized \[F#]verse. \[E&7]

StransﬁoseH 2}
Sbeéinverse

“This verse is "modulated up two “half-steps.

Nendverse

produces

F# B/F# F# Eb7

This is a memorized verse.

A

This verse is modulated up two half-steps.

This works because memorization and replaying happen before transposition.
That is, when memorizing and transposing chords at the same time, the chords
are memorized as written, and then transposed chords are typeset. When re-
playing and transposing chords at the same time, transposition is applied to the
untransposed chords that were memorized.

Multiple Keys. By default, when chords are automatically transposed using
only the transposed chords are printed. However, in some cases
you may wish to cause both the old chords and the transposed chords to be
printed side-by-side so that musicians playing differently-tuned instruments can
play from the same piece of music. This can be achieved by redefining the macro
\trchordformat{(old)}{(new)}, where (old) is the old chord name and (new) is
the transposed chord name. For example, to print the old chord above the new
chord above each lyric, define

\renewcommand{\trchordformat} [2]{\vbox{\hbox{#1}\hbox{#2}}}

Changing Note Names. In many countries it is common to use the solfedge
names for the notes of the scale (LA, SI, DO, RE, MI, FA, SOL) instead of the
alphabetic names (A, B, C, D, E, F, G). By default, the transposition logic only
understands alphabetic names, but you can tell it to look for solfedge names by
typing \solfedge. To return to alphabetic names, type \alphascale.

You can use other note names as well. To define your own note names, type

23

\notenamesin
\notenamesout

\transposehere

\notenames{(nameA)H (nameB)}.. {{nameG)}

where each of (nameA) through (nameG) must consist entirely of a sequence of one
or more uppercase letters. For example, some solfedge musicians use T/ instead
of Sl for the second note of the scale. To automatically transpose such music, one
should type:

\notenames{LA}{TI}{DO}{RE}{MI}{FA}{SOL}

The songs package can also automatically convert one set of note names to
another. For example, suppose you have a large song book in which chords have
been typed using alphabetic note names, but you wish to produce a book that uses
the equivalent solfedge names. You could achieve this by using the \notenamesin
macro to tell the songs package which note names you typed in the input file, and
then using \notenamesout to tell the songs package how you want it to typeset
each note name in the output file. The final code would look like this:

\notenamesin{A}{B}{C}HDMHEI{F}{G}
\notenamesout{LA}{SI}{DOH{RE}MI}FA}{SOL}

The syntaxes of \notenamesin and \notenamesout are identical to that of
(see above), except that the arguments of \notenamesout can consist
of any I¥TEX code that is legal in horizontal mode, not just capital letters.

To stop converting between note names, use [\alphascale| [\solfedge| or
to reset all note names back to identical input and output scales.

Transposing Chords In Macros. The automatic transposition logic won’t
find chord names that are hidden inside macro bodies. For example, if you abbre-
viate a chord by typing,

\newcommand{\mychord}{F\shrp| sus4/(\shrp}

Neranspos(4)
\ [\mychord]

then th macro will fail to transpose it; the resulting chord will still

be an F7sus4/C # chord. To fix the problem, you can use \transposehere in your
macros to explicitly invoke the transposition logic on chord names embedded in
macro bodies. The above example could be corrected by instead defining:

\newcommand{\mychord}{\transposehere{F\shrp| sus4/d\shrpf}}

11 Customizing the Book

The default appearance of a song book can be customized in a variety of ways,
detailed below.

11.1 Song and Verse Numbering

Song numbering in each song section, and verse numbering in each song, are each
controlled in similar ways:

24

songnum

\songnumstyle

\printsongnum

\songnumwidth

versenum

\versenumstyle

\printversenum

Song Numbering. The songnum counter defines the next song’s number. It is
set to 1 at the beginning of a environment and is increased by 1 after each
It can be redefined anywhere except within a song. For example,

\setcounter{songnum}{3}

would set the next song’s number to be 3.

You can change the song numbering style for a song section by redefining the
\songnumstyle macro, which should accept a counter as its single argument. For
example, to cause songs to be numbered in uppercase roman numerals, define

\renewcommand{\songnumstyle} [1] {\Roman{#1}}

The expansion of \songnumstyle must always produce plain text with no font
formatting or unexpandable macro tokens. The text produced by \songnumstyle
will be exported to auxiliary index generation files where it will be lexigraphically
sorted and undergo other processing.

To change the formatting of song numbers as they appear at the beginning of
each song, you should instead redefine the \printsongnum macro, which expects

the text yielded by as its only argument. For example, to typeset

song numbers in italics, define
\renewcommand{\printsongnum} [1]{\it\LARGE#1}

Note that \printsongnum will not affect the typesetting style for song numbers
displayed elsewhere, such as in indexes. It only affects how song numbers are
rendered at the beginning of each song.

The \songnumwidth length defines the width of the shaded boxes that contain
song numbers at the beginning of each song. For example, to make each such box
2 centimeters wide, you could define

\setlength{\songnumwidth}{2cm}

Verse Numbering. The versenum counter defines the next verse’s number. It

is set to 1 after each \beginsong]line and is increased by 1 after each

(except if the verse begins with \beginverse}). The versenum counter can be
redefined anywhere within a song. For example,

\setcounter{versenum}{3}

would set the next verse’s number to be 3.

You can change the song numbering style by redefining the \versenumstyle
macro, which should accept a counter as its single argument. For example, to
cause verses to be numbered in uppercase roman numerals, define

\renewcommand{\versenumstylel} [1] {\Roman{#1}}

The expansion of \versenumstyle should always produce plain text with no font
formatting or unexpandable macro tokens.

To change the formatting of verse numbers as they appear at the beginning of
each verse, you should instead redefine the \printversenum macro, which expects
the text yielded by [\versenumstyle|as its only argument. For example, to typeset
verse numbers in italics, define

\renewcommand{\printversenum} [1] {\it\LARGE#1.\ }

25

\versenumwidth

\noversenumbers

\placeversenum

\lyricfont

\stitlefont

\versefont
\chorusfont

\printchord

\everyverse
\everychorus

The \versenumwidth length defines the horizontal space reserved for verse
numbers to the left of each verse text. Verse text will be shifted right by this
amount. For example, to reserve half a centimeter of space for verse numbers,
define

\setlength{\versenumwidth}{0.5cm}

You can set \versenumwidth to a size less than the space taken up by some
or all of the verse numbers. Doing so will cause the first line of the verse to be
sufficiently indented to make room for the verse number, but the rest of the lines
of the verse will only be indented by \versenumwidth.

To turn off verse numbering entirely, use \noversenumbers. This is equivalent
to saying

\renewcommand{\printversenum} [1]{}
\setlength{\versenumwidth}{Opt}

The horizontal placement of verse numbers within the first line of each verse is
controlled by the \placeversenum macro. By default, each verse number is placed
flush-left. For more information on this macro, recompile this documentation with
the implementation section included.

11.2 Song Appearance

Font Selection. By default, lyrics will be typeset using the document-default
font (\normalfont) and with the document-default point size (\normalsize). You
can change these defaults, however, by redefining \1lyricfont. For example, to
cause lyrics to be typeset in small sans serif font, you could define

\renewcommand{\lyricfont}{\sffamily\small}

Song titles are typeset in a sans-serif, slanted font by default (sans-serif, up-
right if producing slides). You can change this default by redefining \stitlefont.
For example, to cause lyrics to be typeset in a roman font, you could define

\renewcommand{\stitlefont}{\rmfont\Large}

You can apply additional font changes to verses and choruses by redefining
\versefont and \chorusfont. For example, to typeset choruses in italics, you
could define

\renewcommand{\chorusfont}{\it}

By default, chords will be typeset in sans serif oblique (slanted) font. You can
customize chord appearance by redefining \printchord, which accepts the chord
text as its sole argument. For example, to cause chords to be printed in roman
boldface font, you could define

\renewcommand{\printchord} [1]{\rmfamily\bf#1}

Verse and Chorus Titles. The \everyverse macro is executed at the begin-
ning of each verse, and \everychorus is executed at the beginning of each chorus.
Thus, to begin each chorus with the word “Chorus:” one could type,

\renewcommand{\everychorus}{\textnote{Chorus:}}

26

\versesep

\baselineadj

\cbarwidth

\sbarheight

\makeprelude
\makepostlude

\extendprelude
\extendpostlude

Spacing Options. The vertical distance between song verses and song choruses
is defined by the skip register \versesep. For example, to put 12 points of space
between each pair of verses and choruses, with a flexibility of plus or minus 2
points, you could define

\versesep=12pt plus 2pt minus 2pt

The vertical distance between the baselines of consecutive lines of lyrics is
computed by the songs package based on several factors including the lyric font
size, the chord font size (if in mode), and whether mode is cur-
rently active. You can adjust the results of this computation by redefining skip
register \baselineadj. For example, to reduce the natural distance between base-
lines by 1 point but allow an additional 1 point of stretching when attempting to
balance columns, you could define

\baselineadj=-1pt plus 1pt minus Opt

The width of the vertical line that appears to the left of choruses is controlled
by the \cbarwidth length. To eliminate the line entirely (and the spacing around
it), you can set \cbarwidth to Opt:

\setlength{\cbarwidth}{Opt}

The height of the horizontal line that appears between each pair of songs is
controlled by the \sbarheight length. To eliminate the line entirely (and the
spacing around it), you can set \sbarheight to Opt:

\setlength{\sbarheight}{Opt}

Song Top and Bottom Material. For complete control over the appearance
of the header and footer material that precedes and concludes each song, you can
redefine the macros \makeprelude and \makepostlude. When typesetting a song,
the songs package code invokes both of these macros once (after processing all the
material between the |\beginsong|and [\endsong|lines), placing the results within
vboxes. The resulting vboxes are placed atop and below the song content. By
default, \makeprelude displays the song’s titles, authors, and scripture references
to the right of a shaded box containing the song’s number; and \makepostlude
displays the song’s copyright and licensing information in fine print.

To customize the default behavior, you can override these two macros with
new definitions. Within the new definitions, use \songtitle|to get the song’s pri-
mary title and use \nexttitle| or \foreachtitle|to access any alternate titles.
The song’s authors, scripture references, and copyright information (if any) can
be retrieved with \songauthors| \songrefs| and [\songcopyright} The song’s
licensing information (if any) can be retrieved with More infor-
mation about these macros can be found in To get the song’s number, use
[\songnumstyleflsongnuml} (see §11.1).

Sometimes a less drastic addition to the song header or footer is desired.
To use the existing song header and footer structures but change some material
under the title in the header, or to change the material in the footer, redefine
\extendprelude or \extendpostlude. For example, to print the words “Used
with permission” at the end of every song’s footer information, one could define

27

\showauthors
\showrefs

\vvpenalty
\ccpenalty
\vcpenalty
\cvpenalty

\sepverses

\spenalty

\versejustify
\chorusjustify

\justifyleft
\justifycenter

\notejustify

\renewcommand{\extendpostlude}{
[\songcopyright\ [\songlicense\unskip
\ Used with permission.

}

For an example of how to redefine \extendprelude see §12.2]
Within[\extendprelude|or\extendpostlude| one can use \showauthors and
\showrefs to display the song author information and scripture reference citations

(if any). See the \newsongkey| macro in §12.2ffor an example.

Page- and Column-breaking. Page-breaking and column-breaking within
songs that are too large to fit in a single column/page is influenced by the values of
several penalties. Penalties of value \vvpenalty, \ccpenalty, \vcpenalty, and
\cvpenalty are inserted into each song between consecutive verses, between con-
secutive choruses, after a verse followed by a chorus, and after a chorus followed
by a verse, respectively. The more negative the penalty, the more likely TEX is to
place a page- or column-break at that penalty. If any are set to -10000 or lower, a
break will be forced there. By default, all are set to -100 so that breaks between
verses and choruses are preferred over breaks within choruses and verses, but are
not forced.

Saying \sepverses sets all of the above penalties to -10000 except for
\ccpenalty which remains set to -100. This is useful in mode because
it forces each verse and chorus to be typeset on a separate slide, except for con-
secutive choruses, which remain together when possible. (This default reflects an
expectation that consecutive choruses typically consist of a pre-chorus and chorus
that are always sung together.)

These defaults can be changed by changing the relevant penalty register
directly. For example, to force a page- or column-break between consecutive
choruses, type

\ccpenalty=-10000

The value of \spenalty controls whether multiple songs are allowed to appear
in a single column/page. Values higher than -10000 allow multiple songs; other
values cause each song to be started on a fresh column/page. The default is 0,
except when producing slides when the default is -10000.

Text Justification. Various parameters affecting the justification of verses and
choruses are controlled by macros \versejustify and \chorusjustify, respec-
tively. By default, both typeset paragraphs ragged-right with hanging indentation,
and they introduce space at the left margin for verse numbers and the vertical bar
shown to the left of choruses. In slides mode, they are redefined to center all lyrics.

To force verses or choruses to be left-justified or centered, set
or [\chorusjustify|equal to \justifyleft or \justifycenter, respectively. For
example, to cause choruses to be centered, one could type:

\renewcommand{\chorusjustify[}{\justifycenter}

Justification of textual notes too long to fit on a single line is controlled by the
\notejustify macro. By default, it sets up an environment that fully justifies the
note (i.e., all but the last line of each paragraph extends all the way from the left

28

\placenote

\scripturefont

\printscrcite

\idxheadwidth

\idxcont

\titleprefixword

to the right margin). For more information, recompile this documentation with
the implementation section included.

A textual note that is shorter than a single line is placed flush-left by default,
or is centered when in slides mode. This placement of textual notes is controlled
by \placenote. For more information, recompile this documentation with the
implementation section included.

11.3 Scripture Appearance

By default, scripture quotations will be typeset in Zaph Chancery font with the
document-default point size (\normalsize). You can change these defaults by
redefining \scripturefont. For example, to cause scripture quotations to be
typeset in sans serif italics, you could define:

\renewcommand{\scripturefont}{\sffamily\it}

By default, the citation at the end of a scripture quotation will be typeset
in sans serif font at the document-default point size (\normalsize). You can
customize the appearance of the citation by redefining \printscrcite, which
accepts the citation text as its sole argument. For example, to cause citations to
be printed in roman italics font, you could define

\renewcommand{\printscrcite}[1]{\rmfamily\it#1}

11.4 Indexes

Index Appearance. The \idxheadwidth length defines the width of the shaded
boxes that begin each alphabetic block of a large index. For example, to set the
width of those boxes to 1 centimeter, you could define

\setlength{\idxheadwidth}{1lcm}

In a scripture index, when a column break separates a block of entries devoted
to a book of the Bible, the new column is titled “(bookname) (continued)” by
default. You can change this default by redefining the \idxcont macro, which
will receive the (bookname) as its single argument. For example, to typeset an
index in German, one might define

\renewcommand{\idxcont}[1]{#1 (fortgefahren)}

Alphabetization Options. In English, when a title begins with “The” or “A”,
it is traditional to move these words to the end of the title and sort the entry by
the following word. So for example, “The Song Title” would be indexed as “Song
Title, The”. To change this default behavior, you can use \titleprefixword
in the document preamble to define each word that will be moved to the end
whenever it appears as the first word of a title index entry. For example, to cause
the word “I” to be moved to the end of title index entries, one could say,

\titleprefixword{I}

The first use of \titleprefixword overrides the defaults, so if you also want
to continue to move “The” and “A” to the end of entries, you must also say
\titleprefixword{The} and \titleprefixword{A} explicitly. This macro may
only be used in the document preamble.

29

\authsepword

\authbyword

\authignoreword

\colminheight

Special Words In Song Info. When parsing author index entries, the word
“and” is recognized by the songidx program as a conjunctive that separates au-
thor names. To override this default and specify a different conjunctive, use the
\authsepword macro one or more times in the document preamble. For example,
to instead treat “und” as a conjunctive, you could say,

\authsepword{und}

The first use of \authsepword overrides the default, so if you also want to continue
to treat “and” as a conjunctive, you must also say \authsepword{and} explicitly.
The \authsepword macro may only be used in the document preamble.

When parsing author index entries, the word “by” is recognized as a keyword
signaling that the index entry should only include material in the current list
item that follows the word “by”. So for example, “Music by J.S. Bach” would be
indexed as “Bach, J.S.” rather than “Bach, Music by J.S.” To recognize a different
word instead of “by”, you can use \authbyword in the document preamble. For
example, to recognize “durch” instead, you could say

\authbyword{durch}

The first use of \authbyword overrides the default, so if you also want to continue
to treat “by” as a keyword, you must also say \authbyword{by} explicitly. The
\authbyword macro may only be used in the document preamble.

When parsing author index entries, if a list item contains the word “unknown”,
that item is ignored and is not indexed. This prevents items like “Composer un-
known” from being indexed as names. To cause the indexer to recognize and
ignore a different word, you can use the \authignoreword macro in the docu-
ment preamble. For example, to ignore author index entries containing the word
“unbekannt”, you could say,

\authignoreword{unbekannt}

The first use of \authignoreword overrides the default, so if you also want to
continue to ignore list items containing the word “unknown”, you must also say
\authignoreword{unknown} explicitly. The \authignoreword macro may only
be used in the document preamble.

11.5 Other Customizations

Column Balancing. Each column in a two-column song book is vertically
stretched to be at least as high as the value of length \colminheight. In
books, \colminheight is set by default to be the value of \textheight. This has
the effect of making every column exactly \textheight high. In books,
\colminheight defaults to Opt, causing each column to be typeset at its natural
height without any stretching. You can change the value of \colminheight to
force a different amount of column stretching. For example, if you set

\setlength{\colminheight}{9in}
\setlength{\textheight}{9.5in}

then each column will be at least 9 inches high with a possible extra 0.5 inches of
space to accommodate columns that are slightly larger.

30

\songmark
\versemark
\chorusmark

\songauthors

\songrefs

\songcopyright

\songlicense

\songtitle

\resettitles

\nexttitle

Page Headers and Footers. If you want to add information associated with
songs to page headings and footers, you can redefine \songmark, \versemark, or
\chorusmark to add the necessary TEX marks to the current page whenever a
new song, verse, or chorus begins. These macros expect no arguments; to ac-
cess the current song’s information including titles, use the macros documented
in §12.11 To access the current song’s number or the current verse’s number,
use \songnumstylelfsongnum} or \songnumstylelfversenuml} (see §I1.1). For ex-
ample, to include the song number in the page headings produced by ITEX’s
\pagestyle{myheadings?} feature, you could redefine \songmark as follows:

\renewcommand{\songmark}{
\markboth{\songnumstyle{|songnuml}}{\songnumstyle{lsongnum/}}
}

12 Programming

The songs package provides numerous macros that can be helpful when writing
IXTEX code for a song book document. These are described below.

12.1 Accessing Song Info

The macros described in this section are typically used within or
to typeset the various information provided in the[\beginsong]line

or elsewhere within the song. However, they can also be used elsewhere within a
song if desired.

To access the current song’s list of authors (if any) use \songauthors. This
yields the value of the [by=] key used in the line.

To access the current song’s list of scripture references (if any) use \songrefs.
The result of \songrefs will not yield exactly what was used in the keyval
of the line; some preprocessing is done first. In particular, hyphens
have been changed to en-dashes and spaces that fall within a list of verse numbers
have been changed to thin spaces. In addition, various penalties have been added
to inhibit line breaks in strange places and encourage line breaks in others.

To access the current song’s copyright info (if any), use \songcopyright. This

yields the value of the key used in the line.

To access the current song’s licensing information (if any), use \songlicense.
This yields the value of the key used in the line, or whatever text
was last declared with

Since songs can have any number of titles, accessing the current song’s title
requires something more sophisticated than a single macro. The following macros
describe how to access each of a song’s titles in turn.

The \songtitle macro yields the current song’s title. By default this is the
first title provided in the line. The \nexttitle|and \foreachtitle]
macros (see below) cause it to be set to the current song’s other titles, if any.

To access the current song’s primary title (i.e. the first title specified in the
song’sline), execute \resettitles. This sets the \songtitle macro
to be the song’s primary title.

To access the song’s next title, you can execute \nexttitle, which sets

31

\foreachtitle

\newsongkey

\songtitle to be the next title in the song’s list of titles (or sets \songtitle
to \relax if there are no more titles).

Using \nexttitle in a \loop construction suffices to access all of a song’s
titles, but in the common case that you just want to access all of of the titles in
sequence, there is an easier way. The \foreachtitle macro accepts a chunk of
BTEX code as its single argument and executes it once for each (remaining) song
title. Within the code chunk, use \songtitle to access the current title.

For example, the following code would generate a comma-separated list of all
of the current song’s titles:

\songtitle
\nexttitle
\foreachtitle{, \songtitle[

12.2 Defining New Beginsong Keyvals

The \beginsong] macro supports several optional keyval parameters, including
sr=| and for declaring song information; but users can define their own
additional keyvals as well. To do so, use the \newsongkey macro, which has the
syntax

\newsongkey{(keyname)}{{initcode)} [{default)]1{(setcode)}

Here, (keyname) is the name of the new key for the keyval, (initcode) is WTEX code
that will be executed at the start of each line before the

arguments are processed, (default) (if specified) is the default value used for the

keyval when (keyname) appears in [\beginsong| without a value, and (setcode)
is macro code that will be executed whenever (key) is parsed as part of the

keyval arguments. In (setcode), #1 expands to the value assigned
by the user to the keyval (or to (default) if no value was given).

For example, to define a new song key called arr which stores its value in a
macro called \arranger, one could write:

\newcommand{\noarranger}{}
\newcommand{\arranger}{}
\newsongkey{arr}{\let\arranger=\noarranger}{\def\arranger{#1}}

Then one could redefine \extendprelude| to print the arranger below the other
song header information:

\renewcommand{\extendprelude}{
[\showrefs\showauthors|
\ifx\arranger\noarranger\else

{\bfseries Arranged by \arranger\par}
\fi

}

A line could then specify the song’s arranger as follows:
[\beginsong{The Title}[arr={S. Omebody}]

endsong

32

\if...

Type Processed only if. ..

chorded the [chorded| option is active

lyric the [chorded| option is not active

slides the [slides|option is active

partiallist the \includeonlysongs| macro is being used to extract a
partial list of songs

songindexes the noindexesl option is not active

measures the momeasures|option is not active

pdfindex the popdfindex|option is not active

rawvtext the [rawtext| option is active

transcapos the transposecapos| option is active

vnumbered the current verse is numbered (it was started with
Nbeginversd|instead ofm

Table 1: Conditional macros

This would produce

1 The Title

Arranged by S. Omebody

For more detailed information about keyvals and how they work, the reader is
advised to consult the documentation for David Carlisle’s keyval package, which
should come standard with most IXTEX 2¢ installations.

12.3 Conditionals

The songs package provides a variety of macros for creating conditional blocks
of code. These are useful for including certain verses or textual notes only in
certain kinds of books. For example, a musician’s chord book might include extra
verses with alternate chordings; these extra verses wouldn’t be shown in the non-
chorded version of the book. Conditional blocks can also be used in ITEX code to
customize parameters or redefine macros whose definitions should depend on the
kind of book being generated.

A conditional block begins with a macro named \if (type), where (type) is one
of the types listed in the first column of Table[I] The conditional block concludes
with the macro \fi. Any material between the \if(type) and the \fi will be
processed only if the condition in the second column of the table is true. Between
the \if(type) and the \fi may also appear an \else. When \else is used, then
the material between the \else and the \fi will only be processed if the condition
in the second column is false.

For example, in the construction

\ifchorded
(4)
\else
(B)

\fi

33

\begin...only
\end...only

\begin. . .never
\end. . .never

\songlist

\shiftdblquotes

material (A4) is only included if the option is active, and material (B) is
only included if the option is not active.

The conditional blocks described above will work fine most places, but if they
begin within a verse or chorus, then problems can result. In that case TEX may
complain of a “runaway argument” because end-of-line has a special meaning
within verses and choruses (it is \outer) that TEX disallows within conditional
blocks. (For a more thorough explanation, recompile this document with the
implementation included.)

To avoid this problem, start the conditional block with \begin(type)only
instead of \if(type). The conditional block must end with an \end(type)only
(with the same (type)) instead of a \fi. For example:

\beginchordedonly

\endchordedonly

produces a conditional block that will only be processed if the option
is in effect. These conditionals can be used anywhere, not just within verses or
choruses, but they have the limitation that they cannot contain an \else. (Keep
reading for a way to work around this limitation, though.)

You can create inverses of all the conditionals listed in Table[I] by substituting
never for only in the macro names described in the previous paragraph. For
example,

\beginslidesnever

\endslidesnever

produces a conditional block that will only be processed if the option is not
in effect. This means that you can simulate an \if...\else...\fi construction
by using two consecutive blocks with opposite conditions. For example,

\beginslidesonly

\endslidesonly
\beginslidesnever

\endslidesnever

is the same as \ifslides...\else...\fi, but it is safe to use within a verse or
chorus.

12.4 Partial Song Lists

When[\includeonlysongs|is used to extract a partial list of songs, the \songlist
macro expands to the comma-separated list of songs that is being extracted. Re-
defining \songlist within the document preamble will alter the list of songs to
be extracted. Redefining it after the preamble may have unpredictable results.

12.5 Font Kerning Corrections

Scripture Font Quotation Marks. The Zaph Chancery font, used by default

34

\chordlocals

to typeset scripture quotations, seems to have some kerning problems with its
double-quote ligatures. In particular, every left double-quote and right-double
quote seems to have about 1.1pt and 2pt of extra space, respectively, to its left (to
my eye). This causes left double-quotes appearing at the left margin to appear
indented, and it causes right double-quotes to appear spaced out to the right of
the quoted text they finish. Rather than redefine the font metrics (which would
complicate the installation of this software), the \shiftdblquotes macro can be
used to adjust the spacing around all double-quote ligatures until the current
scoping group ends. The syntax is:

\shiftdblquotes{(ldgleft)}{ ({dgright)}{(rdgleft) }{(rdqright)}

where all four parameters are lengths. The effect is to insert (ldgleft) and (ldgright)
extra space to the left and right of all left double-quote ligatures, and insert
(rdqleft) and (rdqright) extra space to the left and right of all right double-quote
ligatures.

To correct the kerning of the double-quote ligatures in the Zaph Chancery
font, the \scripturefont| macro invokes

\shiftdblquotes{-1.1pt}{Opt}{-2pt}{Opt}

Unless you use other fonts that also have this problem, or you use an unusual
point size for Zaph Chancery that necessitates a different kerning correction, the
user probably shouldn’t need to use this macro explicitly.

Chord Overstriking. In order to conserve space and keep songs readable, the
songs package pushes chords down very close to the lyrics with which they are
paired. Unfortunately, this can sometimes cause low-hanging characters in chord
names to overstrike the lyrics they sit above. For example,

Gsus4/D)
\ [(Gsus4/D)]0verstrike produces Overstrike

Note that the parentheses and slash symbols in the chord name have invaded the
lyric that sits beneath them.

A little bit of overstriking is definitely preferable to raising chord names higher
(which would make songs more difficult for musicians to read and play), but book-
makers with a penchant for high-quality typesetting might desire a better solution.
The best solution is to use a font for chord names that minimizes low-hanging
symbols; but if you lack such a font, then the following trick works pretty well.
Somewhere in the preamble of your document, you can write the following KTEX
code:

\renewcommand{\chordlocals}{\catcode‘(\active

\catcode ‘) \active
\catcode‘/\active}

\newcommand{\smraise} [1]{\raise2pt\hbox{\small#1}}

\newcommand{\myslash}{\smraise/?}

\newcommand{\myopenparen}{\smraise (}

\newcommand{\mycloseparen}{\smraise)}

{\chordlocals

\global\let (\myopenparen
\global\let)\mycloseparen
\global\let/\myslash}

35

This sets the /, (, and) symbols as active characters whenever they appear within
chord names. (Recompile this documentation to include the implementation sec-
tion for more information about the \chordlocals macro.) Each active character
is defined so that it produces a smaller, raised version of the original symbol. The
result is as follows:

(Gsus4/D)
\[(Gsus4/D)]0verstrike (fixed) produces Overstrike (fixed)

As you can see, the low-hanging symbols have been elevated so that they sit above
the baseline, correcting the overstrike problem.

13 Index Generation

The material in this section describes macros provided by the songs package that
are used during the automatic generation of the song book indexes. Since index
generation is automatic, document authors should not normally need to use any
of these macros directly. The documentation in this section is therefore provided
purely for completeness and for informational purposes. For instructions on how
to automatically generate indexes when compiling a song book, see §6] For info
on how to customize the appearance of indexes, see
Automatic generation of song book indexes is a three stage process:

1. Each time a song book KTEX file is compiled, an auxiliary file named
(filename) .sxd will be written out for each (filename) defined using
[\newindex| [\newauthorindex| or \newscripindex] These .sxd files are
simple ascii files that can be viewed using any standard text editor. They
begin with a line identifying the type of index (title, author, or scripture)
and then contain triples of lines, one triple for each song to appear in the
index. The first line of a triple has the information by which the song is
being indexed (a title, author, or scripture reference). The second line has

the song’s number in the book (yielded by [\songnumstyle]). The third line

is an identifying label for the song used in hyperlinking.

2. Once the .sxd files have been generated, an external program is used to
transform each .sxd file into a .sbx file. Most I¥TEX documents use the
makeindex program provided with IATEX to produce indexes from data files,
but makeindex is not powerful enough to deal with scripture references.
Thus, distributions of songs package software should come with a specialized
index generation program to do this.

3. The .sbx files produced by the index generator program are then read in
by the macro next time the source document is compiled using
IXTEX. These .sbx files consist of the macros and environments described
below.

idxblock In indexes that are blocked off into sections, one for each letter of the alphabet,
the (filename) . sbx files generated for that index will consist of a series of idxblock
environments, one for each such section. An idxblock environment begins with

\begin{idxblock}{(letter)}

36

\idxentry
\idxaltentry

where (letter) is the letter of the alphabet for that block. An idxblock environ-
ment ends with \end{idxblock}.

The (filename) . sbx files generated for each index will contain a series of lines
of the form

\idxentry{(leftside)}{(rightside)}

\indexaltentry{(leftside)}{(rightside)}

each of which creates an index entry with (leftside) on the left, followed by a
series of dots, followed by (rightside) on the right. The \indexentry is used for
“normal” entries (e.g., titles in a title index), and \indexaltentry is used for
“alternate” entries (e.g., lyric lines in a title index).

Within (rightside), multiple items are separated with \\ macros instead of
commas. When used in an index .sbx file, the \\ macro will produce a comma
followed by some complex spacing that allows index lines to be broken suitably if
they are too long to fit in one physical line.

14 Other Similar Packages

There are a number of other IATEX packages available for typesetting songs, tabla-
ture diagrams, or song books. Probably the best of these is the Songbook package
by Christopher Rath (http://rath.ca/Misc/Songbook). Most of the differences
between that package and this one are intentional; the following is a summary of
where I've adopted various differing design decisions and why.

Ease of Song Entry. In designing the songs package, I invested a lot of effort
in making it easy to type chords. With most KTEX song book packages, including
the Songbook package, the user types chords using a standard IMTEX macro syntax
like \Ch{(chord)}{{lyric)}. Although I originally wrote the songs package to use
a similar syntax for chords, I switched to the less conventional \ [{chord)] {lyric)
syntax for several significant reasons detailed below.

First, macros in the standard KTEX package syntax take longer to type than
macros in the songs package’s syntax (eight extra keypresses including uses of the
shift key). This can become become really taxing when typing up a large book.
Chords often appear as frequently as one per syllable, especially in hymns, so
keeping the syntax as brief as possible is desirable.

Second, the standard KTEX macro syntax isn’t really suited to typesetting
chords because it is extremely difficult for the user to know what exactly should
go in the (lyric) part of the macro. Chords don’t always lie above entire words;
they often lie above only a syllable of a word, or they might lie above both a
word and the punctuation that follows it. This means that in order to type chords
correctly in a standard I¥TEX macro format, a user must conform to some very
unintuitive and complex style rules. For example, in the Songbook package, typ-
ing \Ch{C}{difficult!} and \Ch{C}{diffi}cult! and \Ch{C}{difficult}! all
produce different results, each of which are undesirable for different reasons in
different situations. The user must learn when to use which, and often must ex-
periment to discover which works and which doesn’t in any given situation. In
contrast, in the songs package the (lyric) argument is implicit (it isn’t surrounded
by opening and closing braces), which allows the package programming to auto-
matically determine which part of the following lyrics should lie under the chord

37

http://rath.ca/Misc/Songbook

and which should not. This eliminates the need for the user to learn any complex
style rules unless something unusual is desired.

Third and finally, proper hyphenation is a significant challenge when typeset-
ting song books. Extra hyphenation must usually appear in chord books wherever
a chord is wider than the syllable it sits above. Such hyphenation should be
omitted in lyric-only versions of the book since those versions lack chords, so the
hyphenation would be superfluous and odd-looking. Packages that use a standard
TEX macro syntax for chords require the user to manually identify places where
extra hyphenation will be necessary and type something special in those places to
make chord books look right. This can be very taxing and difficult for the user
because it isn’t usually possible to predict the need for hyphenation in advance.
The user must therefore proof the chord book very carefully to identify and correct
any hyphenation errors. In contrast, the macro syntax used by the songs package
allows its programming to detect and correct all the usual forms of hyphenation
automatically, greatly simplifying the task of entering songs.

One final difference between the chord-entry syntax used by the Songbook
package and that that used by the songs package involves flat accidentals. The
Songbook package allows the user to use “b” in a (chord) to produce a flat symbol,
whereas the songs package requires an “&” instead. Although using “b” is probably
more intuitive for the casual user, I elected not to support that syntax for an
important technical reason. When “b” is redefined to produce a flat symbol in a
(chord), the user can no longer use “b” for any other purpose within a (chord),
such as to produce a literal “b” or to type another macro name like \hbox that
contains a “b”. Consequently, the songs package uses the less obvious & symbol
to produce flat symbols.

Song Structure. The Songbook package has more detailed support than the
songs package for typesetting material that reflects the high-level structure of a
song. There are special mechanisms for typesetting intros, bridges, brackets, end-
ings, and the like. The songs package is comparatively simplistic in the sense
that it provides a smaller number of primitives that can be combined to dupli-
cate this functionality. Textual instructions are producible by document authors

using (§7.6), (§7.6), and \beginchordedonly| (§12.3) as
building blocks.

Stylistic Differences. The Songpook package is really designed to produce
chord books with one song per page, whereas the songs package is designed to
produce chord books with many songs per page, arranged in two columns. Either
approach might be the better one depending on which sorts of uses your song book
is to be put. If you like to make photocopies of individual pages and hand them
out to musicians, a book with one song per page might be more convenient. On
the other hand, if you are printing entire chord books, one song per page can be-
come very expensive. With the songs package, I've elected to pack as many songs
as possible per page by default, but include options for generating one song per
page (in particular see [\spenalty|and \songcolumns|) and options for generating
a specified subset of songs in a specified order (for producing hand-outs that can
be photocopied and given to musicians for a particular service).

Song appearance also differs between the Songbook and songs packages. Since
the songs package was designed for multiple columns per page, it includes a number

38

of features not available in the Songbook package like automatic column balancing,
completely customizable song header and song footer blocks, and facilities for
adding beautiful scripture quotations to fill in gaps between songs.

Indexes. The Songpook package has a facility for automatically generating an
index sorted by key, but the songs package does not. On the other hand, the songs
package has a facility for automatically generating indexes sorted by scripture
references but the Songbook package does not. I adopted the latter approach
because while I personally have not found much use for indexes sorted by key,
I have found a scripture index invaluable for planning services around particular
sermons or topics. Both packages can generate indexes sorted by author, by title,
and by notable lines of lyrics.

Automatic Transposition. The songs package has a facility for automatically
transposing songs, and even generating chord books that print the chords in mul-
tiple keys (e.g., so that a pianist and guitarist using a capo can play together
from the same book). I am not aware of any other song typesetting packages that
include automatic transposition.

The Songbook package and the songs package were developed entirely inde-
pendently. I originally developed the set of A TEX macros that eventually became
the songs package in order to typeset a song book for the Graduate Christian
Fellowship (GCF) at Cornell University, and the Cornell International Christian
Fellowship (CICF). Once I had fine-tuned my package to be sufficiently versatile,
I decided to release it for public use. At that time I noticed the Songbook package
and wrote this analysis of the differences between that package and mine.

For information on more song-typesetting resources, I recommend consulting
the documentation provided with the Songpook package. It includes an excellent
list of other resources that might be of interest to creators of song books.

15 GNU General Public License

TERMS AND CONDITIONS FOR
COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed

by the copyright holder saying it may be distributed under the terms of this Gen-
eral Public License. The “Program”, below, refers to any such program or work,
and a “work based on the Program” means either the Program or any deriva-
tive work under copyright law: that is to say, a work containing the Program
or a portion of it, either verbatim or with modifications and/or translated into
another language. (Hereinafter, translation is included without limitation in the
term “modification”.) Each licensee is addressed as “you”.
Activities other than copying, distribution and modification are not covered by
this License; they are outside its scope. The act of running the Program is not
restricted, and the output from the Program is covered only if its contents consti-
tute a work based on the Program (independent of having been made by running
the Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as
you receive it, in any medium, provided that you conspicuously and appropriately

39

publish on each copy an appropriate copyright notice and disclaimer of warranty;
keep intact all the notices that refer to this License and to the absence of any
warranty; and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at
your option offer warranty protection in exchange for a fee.

. You may modify your copy or copies of the Program or any portion of it, thus
forming a work based on the Program, and copy and distribute such modifications
or work under the terms of Section 1 above, provided that you also meet all of
these conditions:

(a) You must cause the modified files to carry prominent notices stating that you
changed the files and the date of any change.

(b) You must cause any work that you distribute or publish, that in whole or
in part contains or is derived from the Program or any part thereof, to be
licensed as a whole at no charge to all third parties under the terms of this
License.

(c¢) If the modified program normally reads commands interactively when run,
you must cause it, when started running for such interactive use in the most
ordinary way, to print or display an announcement including an appropriate
copyright notice and a notice that there is no warranty (or else, saying that
you provide a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this License.
(Exception: if the Program itself is interactive but does not normally print
such an announcement, your work based on the Program is not required to
print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms,
do not apply to those sections when you distribute them as separate works. But
when you distribute the same sections as part of a whole which is a work based on
the Program, the distribution of the whole must be on the terms of this License,
whose permissions for other licensees extend to the entire whole, and thus to each
and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control
the distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with
the Program (or with a work based on the Program) on a volume of a storage or
distribution medium does not bring the other work under the scope of this License.

. You may copy and distribute the Program (or a work based on it, under Section 2)
in object code or executable form under the terms of Sections 1 and 2 above
provided that you also do one of the following:

(a) Accompany it with the complete corresponding machine-readable source
code, which must be distributed under the terms of Sections 1 and 2 above
on a medium customarily used for software interchange; or,

(b) Accompany it with a written offer, valid for at least three years, to give any
third party, for a charge no more than your cost of physically performing
source distribution, a complete machine-readable copy of the corresponding
source code, to be distributed under the terms of Sections 1 and 2 above on
a medium customarily used for software interchange; or,

40

(¢) Accompany it with the information you received as to the offer to distribute
corresponding source code. (This alternative is allowed only for noncom-
mercial distribution and only if you received the program in object code or
executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making
modifications to it. For an executable work, complete source code means all the
source code for all modules it contains, plus any associated interface definition files,
plus the scripts used to control compilation and installation of the executable.
However, as a special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary form) with the
major components (compiler, kernel, and so on) of the operating system on which
the executable runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from
a designated place, then offering equivalent access to copy the source code from
the same place counts as distribution of the source code, even though third parties
are not compelled to copy the source along with the object code.

. You may not copy, modify, sublicense, or distribute the Program except as ex-
pressly provided under this License. Any attempt otherwise to copy, modify, sub-
license or distribute the Program is void, and will automatically terminate your
rights under this License. However, parties who have received copies, or rights,
from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.

. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its
derivative works. These actions are prohibited by law if you do not accept this
License. Therefore, by modifying or distributing the Program (or any work based
on the Program), you indicate your acceptance of this License to do so, and all its
terms and conditions for copying, distributing or modifying the Program or works
based on it.

. Each time you redistribute the Program (or any work based on the Program),
the recipient automatically receives a license from the original licensor to copy,
distribute or modify the Program subject to these terms and conditions. You may
not impose any further restrictions on the recipients’ exercise of the rights granted
herein. You are not responsible for enforcing compliance by third parties to this
License.

. If, as a consequence of a court judgment or allegation of patent infringement or
for any other reason (not limited to patent issues), conditions are imposed on you
(whether by court order, agreement or otherwise) that contradict the conditions
of this License, they do not excuse you from the conditions of this License. If
you cannot distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may not
distribute the Program at all. For example, if a patent license would not permit
royalty-free redistribution of the Program by all those who receive copies directly
or indirectly through you, then the only way you could satisfy both it and this
License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system,
which is implemented by public license practices. Many people have made generous

41

10.

11.

12.

contributions to the wide range of software distributed through that system in
reliance on consistent application of that system; it is up to the author/donor to
decide if he or she is willing to distribute software through any other system and
a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a conse-
quence of the rest of this License.

If the distribution and/or use of the Program is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places
the Program under this License may add an explicit geographical distribution
limitation excluding those countries, so that distribution is permitted only in or
among countries not thus excluded. In such case, this License incorporates the
limitation as if written in the body of this License.

The Free Software Foundation may publish revised and/or new versions of the
General Public License from time to time. Such new versions will be similar in
spirit to the present version, but may differ in detail to address new problems or
concerns.

Each version is given a distinguishing version number. If the Program specifies
a version number of this License which applies to it and “any later version”, you
have the option of following the terms and conditions either of that version or of
any later version published by the Free Software Foundation. If the Program does
not specify a version number of this License, you may choose any version ever
published by the Free Software Foundation.

If you wish to incorporate parts of the Program into other free programs whose
distribution conditions are different, write to the author to ask for permission. For
software which is copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our decision will be
guided by the two goals of preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of software generally.

NoO WARRANTY

BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT
WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER
PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EI-
THER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS
WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRIT-
ING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUEN-
TIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM
(INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INAC-
CURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR
OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

42

	Introduction
	Terms of Use
	Sample Document
	Initialization and Options
	lyric
	chorded
	slides
	rawtext
	\chordson
	\chordsoff
	\slides
	nomeasures
	showmeasures
	\measureson
	\measuresoff
	transposecapos
	noindexes
	\indexeson
	\indexesoff
	nopdfindex
	onesongcolumn
	twosongcolumns
	\songcolumns
	noscripture
	\scriptureon
	\scriptureoff
	noshading
	\includeonlysongs

	Book Sections
	\songsection
	\songchapter
	\newauthorindex
	\newindex
	\newscripindex
	\showindex

	Compiling
	Songs
	songs
	\beginsong
	\endsong
	by=
	cr=
	li=
	\setlicense
	sr=
	\nextcol
	Verses and Choruses
	\beginverse
	\endverse
	\beginchorus
	\endchorus
	\repchoruses
	\norepchoruses
	\brk

	Chords
	\[
	#
	&
	\DeclareLyricChar
	\DeclareNonLyric
	\DeclareNoHyphen
	\MultiwordChords
	\shrp
	\flt

	Replaying Chords
	^
	\memorize
	\newchords
	\replay

	Echoes and Repeats
	\echo
	\rep
	\lrep
	\rrep

	Measure Bars
	\measurebar
	|
	\meter
	\mbar

	Textual Notes
	\textnote
	\musicnote
	\capo

	Index Entries
	index=
	ititle=
	\indexentry
	\indextitleentry

	Chords in Ligatures
	\ch
	\mch

	Scripture Quotations
	\beginscripture
	\endscripture
	\Acolon
	\Bcolon
	\strophe
	\scripindent
	\scripoutdent

	Tablature Diagrams
	\gtab

	Automatic Transposition
	\transpose
	\preferflats
	\prefersharps
	\trchordformat
	\solfedge
	\alphascale
	\notenames
	\notenamesin
	\notenamesout
	\transposehere

	Customizing the Book
	Song and Verse Numbering
	songnum
	\songnumstyle
	\printsongnum
	\songnumwidth
	versenum
	\versenumstyle
	\printversenum
	\versenumwidth
	\noversenumbers
	\placeversenum

	Song Appearance
	\lyricfont
	\stitlefont
	\versefont
	\chorusfont
	\printchord
	\everyverse
	\everychorus
	\versesep
	\baselineadj
	\cbarwidth
	\sbarheight
	\makeprelude
	\makepostlude
	\extendprelude
	\extendpostlude
	\showauthors
	\showrefs
	\vvpenalty
	\ccpenalty
	\vcpenalty
	\cvpenalty
	\sepverses
	\spenalty
	\versejustify
	\chorusjustify
	\justifyleft
	\justifycenter
	\notejustify
	\placenote

	Scripture Appearance
	\scripturefont
	\printscrcite

	Indexes
	\idxheadwidth
	\idxcont
	\titleprefixword
	\authsepword
	\authbyword
	\authignoreword

	Other Customizations
	\colminheight
	\songmark
	\versemark
	\chorusmark

	Programming
	Accessing Song Info
	\songauthors
	\songrefs
	\songcopyright
	\songlicense
	\songtitle
	\resettitles
	\nexttitle
	\foreachtitle

	Defining New Beginsong Keyvals
	\newsongkey

	Conditionals
	\if...
	\begin...only
	\end...only
	\begin...never
	\end...never

	Partial Song Lists
	\songlist

	Font Kerning Corrections
	\shiftdblquotes
	\chordlocals

	Index Generation
	idxblock
	\idxentry
	\idxaltentry

	Other Similar Packages
	GNU General Public License

