
PURL: A polynomial-time algorithm for some
polynomial satisfiability classes

José R. Portillo, José I. Rodrigues

University of Seville and University of Algarve

Abstract

A new polynomial time algorithm to solve some satisfiability classes: PURL
(PropUnit Removable Literals) is presented in this work. This algorithm is
based on unit propagation, does the identification of p-removable literals which
is a particular type of removable literal, and removes them. Given a CNF
formula, each one of its terms can be simplified removing their p-removable
literals. The simplified formula and the original one are logically equivalent.

Some experimental tests have been performed and are presented in this work.

Keywords: satisfiability, algorithms, polynomial classes

The propositional satisfiability problem (SAT) consists in determining whether
a given conjunctive normal form (CNF) propositional logic formula is satisfiable
or not. SAT is NP-complete [1], thus there is no known polynomial-time algo-
rithm for solving it. Because of its importance in areas as diverse as logic,
artificial intelligence and operations research, considerable effort has been spent
in determining how to cope with this reality. Two possible approaches are: (1)
to determine whether there exist algorithms for SAT which usually present a
result in polynomial time [7]; (2) to identify special classes of SAT that can be
solved in polynomial time [4]. In this paper we are concerned with the second
approach.

In the extensive bibliography about SAT several polynomial-time solvable
classes of CNF formulas have been proposed. Horn, renamable Horn, extended
Horn, q-Horn, CC-balanced, single lookahead unit resolution (SLUR), matched
formulas and LinAut are some of the most notably remarkable, referred by
Franco and Gelder as the well known polynomial time classes [4]. Among these
classes, SLUR [4] is incomparable with LinAut [10], and together they contain
all the others [14, 4].

In the present work we present the new polynomial-time algorithm Prop-
Unit Remove Literals (PURL), and the new concept of p-removable literal.
PURL does the identification of p-removable literals and effectively removes
them. Given a CNF formula, each literal in each clause is checked and sup-
pressed if it is p-removable. Both formulas, the simplified and the original one,
are logically equivalent. Thus, if the simplified formula contains the null clause,

Preprint submitted to Journal of Algorithms March 8, 2011

neither of them are satisfiable. If it does not contain the null clause there is
nothing we can state about its satisfiability in general. However, for some satis-
fiability classes of CNF formulas each one of its instances is unsatisfiable if and
only if the simplified formula returned by PURL contains the null clause.

Algorithm PURL was developed when studying two problems, the map la-
beling US-4P problem and the single bend wiring on the cylinder (SBWC).
Each one of their instances was encoded as a SAT problem and solved using
PURL [12]. Each CNF-formula obtained from an US-4P instance is satisfiable
iff the simplified formula returned by PURL does not contain the null clause.
Following a similar schema, an CNF-formula obtained from a SBWC instance
is satisfiable iff applying PURL two times recursively (2PURL) the returned
formula does not contain the null clause.

Moreover, PURL solves the instances of the well known classes as stated in
section 3.

All the CNF formulas from US-4P are solvable by PURL. The satisfiability of
SBWC instances can be obtained applying PURL two times recursively, 2PURL
for short. Both algorithms, PURL and 2PURL, run in polynomial time.

In Section 2 we present algorithm PURL. Additionally, concept of p-removable
literal is explained. PURL can recursively be applied to detect more complex
forms of removable literals. This algorithm, PURL(F , k), and a kp-eliminable
literal definition is presented in Section 5. This definition closely follows the
hierarchies proposed by Dalal and Etherington in [2].

In Section 3 we show that PURL solve the instances of SLUR and LinAut.
Thus, PURL is an unified algorithm which can solve all the well known poly-
nomial time classes, even thought it is not able to provide a model for each
satisfiable instance.

To avoid this limitation, algorithms PURL and SLUR [4] have been linked
together. PURL act as a preprocessor, determining it no satisfiability and sim-
plifying the formula, and SLUR is used to get a truth assignment. For an
arbitrary instance this schema (algorithm) return unsatisfiable, satisfiable (and
a truth assignment) or give up.

In Section 6, we present some experimental results. These results were per-
formed on several sets from Satlib [9]. Surprisingly, PURL (and 2PURL) by
itself solve many instances in several sets.

In the present work all the considering CNF formulas are not tautologies.

1. Definitions

LetX = {x1, · · · , xn} be a set of n boolean variables. Ln = {x1, x1, · · · , xn, xn}
is the set of n positive and n negative literals over the variables of X. x∗i is the
literal xi or xi.

A (partial) truth assignment to the set of literals is a (partial) mapping

t : Ln → {0, 1} such that t(li) = 1 if and only if t(li) = 0 (li = li). Sometimes,
0 is also referred as False and 1 as True. A (partial) truth assignment, or

2

assignment, is represented by a subset of literals τ . Each literal li ∈ τ if and
only if t(li) = 1.

A CNF formula F is the conjunction of its clauses where each clause is
a disjunction of literals. A clause is represented as a subset of literals and is
denoted [l1, · · · , lk] for readability. It is well understand that each literal li ∈ Ln

is not the same as x∗i . F is represented by a set of clauses.
F is satisfiable if there is a truth assignment τ to which all its clauses are

true. A clause is true if one of its literals is in τ , false if all its complemented
literals are in τ and unresolved otherwise. An assignment τ satisfying F is a
model for F . The aim of an algorithm for SAT is to determine whether a given
formula is satisfiable.

Two formulas are said to be logically equivalent if each truth assignment
satisfying one satisfies the other. A clause with only one literal is referred to
as a unit clause. To increase efficiency, unit clauses are immediately set to
True that is, the sole free literal must be assigned value 1 for the formula to
be satisfiable. All the clauses containing this literal are marked true and it
complemented literal is removed from the clauses. This process is termed unit
propagation.

Pure literals (those whose negation does not appear) are also set to True
and all clauses containing this literal marked as True. This process is called
pure literal rule.

2. PURL

Given a CNF formula F and a clause C ∈ F , we denote T1(C, l) the set of
the truth assignments that have assigned the true value to the literal l ∈ C and
false to all of the remaining literals of C.

Theorem 2.1. (Goldberg [6]) Let F be a CNF satisfiable formula. Then there
is a clause C ∈ F , a literal l ∈ C and a true assignment τ ∈ T1(C, l) such that
F(τ) = 1.

Proof. A proof of this result is found in [6].

A literal l ∈ C is said to be removable if none of the truth assignment of
T (l, C) is a model for the formula. Excluding literal l from this clause, does not
change the space of solutions as it is assured by the next result.

Theorem 2.2. Let F be a CNF formula, C ∈ F a clause, and l a removable
literal of C. Thus, F1 = (F \ C) ∪ ({C \ [l]}) and F are logically equivalent.

Proof. Let τ be a model for the simplified formula F1. For each clause C1 ∈ F1

there exists a clause C ∈ F such that C1 ⊆ C. Then F(τ) = 1.
Conversely, let τ be a model for F but F1(τ) = 0. Then, each one of the

literals of C1 = C \ [l] are false to the truth assignment τ and the literal l ∈ C is
true. So τ ∈ T1(l, C) and F(τ) = 1, which contradicts the hypothesis of l ∈ C
being a removable literal.

3

The above result assures that given a propositional formula, excluding each
one of the removable literals, the obtained formula and the original one are
logically equivalent. If F is not satisfiable then it is logically equivalent to the
formula with the null clause, F = {�}.

Let C ∈ F be a clause and l ∈ C be one of their literals. We denoted
Flip(C, l) the clause containing the same literals as C except l which is com-
plemented and Flip(C, l), the set of the complemented literals of the clause
Flip(C, l). Let for instance C = [l, x, y], then Flip(C, l) = [l, x, y] and Flip(C, l) =
{l, x, y}. Thus, any truth assignment τ ∈ T1(C, l) will contain τ0 = Flip(C, l)
as a subset.

Any clause D is a logical consequence of a CNF formula F (F |= D), if each
model of F also satisfies D.

Lemma 2.3. Given a formula F , a literal l of one of their clause C is removable
if and only if Flip(C, l) is a logical consequence of F .

Proof. Let l ∈ C be a removable literal. In this case, each one of the truth
assignments τ ∈ T1(l, C) falsifies F . Assuming that τ1 is a model for F then
τ1 6∈ T1(l, C) and the clause C \ [l] is satisfied by such assignment. Thus, also
Flip(C, l) is satisfiable.

Conversely, if C1 = Flip(C, l) is a logical consequence of F then any truth
assignment τ containing each one of all the literals of C1 falsifies F . Because
τ ∈ T1(l, C), then l ∈ C is a removable literal.

For an instance F of 2SAT, the literal u in the clause [u, v] ∈ F is removable
if and only if the formula F∪{[u], [v]} is not satisfiable, which can be determined
in linear time using the unit propagation algorithm (see [2, 15]), or an algorithm
based in unit propagation designed to solve 2SAT [2, 15, 3]. However, for a
3SAT formula, determining if each one of the all three literals of a given clause
is removable is equivalent to solve the satisfiability of the formula. Thus, if the
satisfiability problem of 3SAT instances is untractable (i.e. it is in NP-P) then
identifying a removable literal of a given clause is also an untractable problem.
These last two facts motivated us to define the next concept of p-removable
literal.
Definition. Given a formula F and one of their terms C, a literal l ∈ C is said to
be p-removable if the unit propagation algorithm PropUnit(F ∪ U(Flip(C, l)))
returns a formula containing the null clause.

PropUnit stands for the well-known algorithm for unit propagation used in
almost all SAT solvers. This is also called unit propagation or boolean constraint
propagation, which runs in time O(|F|). Good descriptions of PropUnit can be
found in [2, 15]. The operator U is introduced for consistency and returns a
formula of unit clauses, each one containing one of the literals of the truth
assignment.

The next example shows a formula where each literal is represented by an
integer, the positive literals by positive integers and the negative literals by
negative integers, which includes several p-removable literals.

4

F = {[1, 2,−4], [−1, 2, 4], [2,−3,−4], [−2, 3,−4], [1, 2, 6], [−1, 2,−6],

[2,−5,−6], [−2, 5,−6], [3, 4, 6], [−3, 4,−6], [4, 5,−6], [−4,−5,−6]}. (1)

Unit propagation of the truth assignment Flip([1, 2,−4],−4) falsifies formula
(1). Thus, the literal −4 ∈ [1, 2,−4] is p-removable and the clause [1, 2,−4]
can be replaced by [1, 2] in that formula. Repeating this procedure with each
literal of each clause of F we could obtain the next formula logically equivalent
to formula (1) as follows:

FE = {[1, 2], [2, 4], [2,−3], [−2, 3,−4], [1, 2], [2,−6],

[2,−6], [5,−6], [3, 4, 6], [−3,−6], [5,−6], [−4,−6]}. (2)

Algorithm PURL (see Algorithm 1) implements this last procedure. Given
a formula F , for each clause, each one of their literals is tested and excluded
if it is p-removable, by running it through the algorithm PropUnit [2]. The
algorithm finishes when a logically equivalent formula FE with no p-removable
literals is achieved or a null clause reached. Since the unit propagation algorithm
PropUnit runs in linear time relatively to the size of the formula, PURL runs in
O(|F|3) in the worst case. However, our experiments show that it usually runs
in lineal time.

Algorithm 1 PURL

Require: A CNF formula F
Ensure: A formula without p-removable literals

repeat
remlitfree = true
for all C ∈ F do

for all l ∈ C do
(F1, τ1) = PropUnit(F ∪ U(Flip(C, l)))
if � ∈ F1 then
F = (F \ C) ∪ (C \ [l]), remlitfree = false

end if
if � ∈ F then
F = {�}

end if
end for

end for
until F = {�} OR remilitfree = true
return (F)

PURL can be implemented following some strategies to increase it efficiency.
One of that strategies can be removing unit clauses from F , when it appears.
Thus, PURL returns a formula with no unit clauses and a (partial) truth as-
signment.

5

Algorithm PropUnit can be efficiently implemented to avoid multiple copies
of the CNF formula.

A list of variables and associate each variable two lists of clauses, one con-
taining positive literal and other containing the negative literal. If one of this
two list is empty, the literal is pure. Clauses are represented as lists of literals.
To avoid multiple copies of the formula to run unit propagation, for each clause
we can associate a 3-uple (id, state,L). Id is a unique value, different for each
PropUnit call. State is a 0, 1 value, where 0 means the clause is unresolved, 1
if it is True. And L is a list of false literal in the clause. The clause is False
when all the literals in the clause are in the list L.

3. PURL solve LinAut and SLUR

The relation is a subclass of is presented in Figure 1 (represented by the
arrows).

CC-balanced

renamable Horn

extended Horn

q-Horn

2SAT

matched formulas

Horn

SLUR

LinAut

Figure 1: Relation among the most well known polynomial classes. Each arrow means is a
subclass of.

Theorem 3.1. 2SAT is solvable by PURL.

Proof. If PURL(F) returns a formula with the null clause then F is not satis-
fiable. Conversely, let F be an instance of 2SAT not satisfiable, minimal due
to the number of clauses. For any clause C = [u, v], the obtained formula
(F1, τ1) = PropUnit(F ∪ {[u], [v]}) contains the null clause. The result fol-
lows observing that PropUnit((F \ C) ∪ {[v]}) returns a formula with the null
clause.

SLUR is a polynomial-time class defined using the nondeterministic algo-
rithm named SLUR. For a given formula F it returns a model for F , “unsatis-
fiable” or “give up” [4].

Theorem 3.2. SLUR is solvable by PURL.

Proof. Let F be a formula in SLUR. Thus, for any sequence of variables the
algorithm SLUR does not give up. Thus, it always returns a model or “unsatis-
fiable”. If F is not satisfiable, unit propagation returns a formula with the null

6

clause as the answer (see Algorithm SLUR [4]). Hence, there is a unit clause
C ∈ F to which its own literal is p-removable. So, PURL(F) returns a formula
with the null clause.

Theorem 3.3. LinAut is solvable by PURL.

Proof. Let F be a unsatisfiable formula in LinAut with no unit clauses. Then,
there is a subformula F1 ⊂ F such that F1 is an instance not satisfiable of
2SAT [14]. Thus, FE = PURL(F) has the null clause.

LinAut is incomparable with SLUR, and together they contain the well
known classes of satisfiability solvable in polynomial time [14, 4]. Consequently,
from the two last results, all those well known polynomial classes are solvable by
PURL. That is, for each one of its instances if the simplified formula returned
by PURL contains the null clause then they both are unsatisfiable, otherwise
they both are satisfiable.

4. Linking PURL and SLUR

Algorithm PURL can be used as a preprocessor for SAT. If the returned
formula contains the null clause both, this and the original one, are unsatisfiable.
Otherwise we do not know about it satisfiability in general.

For an arbitrary CNF formula, the algorithm SolveRemLit(F , r) uses PURL(F , r)
as a preprocessor and returns a model for F or it returns the message unsatis-
fiable or it gives up.

Table 2 shows our experimental results when running the algorithm Solve-
RemLit(F , r), for r = 1, 2, and the algorithm SLUR(F) with some SATLIB
benchmark instances, where we can observe that: (1) SLUR is almost inefficient
due to unsatisfiable instances; (2) for algorithm SolveRemLit, the number of
solved instances, either satisfiable or unsatisfiable, greatly increases with the
increased values of k. The SolveRemLit runs were performed choosing, in the
line 7 of this algorithm, the first literal of the first clause of F .

The algorithm SolveRemLit(F , 1) can also be used to get a model for the
satisfiable instances of US-4P-SAT, without giving up. To do this, a particular
criteria shall be used to choose each literal (see line 7). That is, while F contains
a clause with more than 2 literals, l ∈ C must be taken such that |C| > 2 and
C ∈ Fi,j where i (i < j) is minimum, otherwise l can be any literal in any of its
clauses.

5. kPURL

In Section 2 we have defined the concept of p-removable literal. By an
approach similar to that followed by Dalal and Etherington [2] we now define
the general concept of kp-removable literal (k > 1) as follows.
Definition. Let F be a propositional formula, C be one of its clauses and
l ∈ C be a literal. Then, l is kp-removable (k > 1) if the algorithm PURL(F ∪
U(Flip(C, l)), k − 1) returns a formula with the null clause.

7

Algorithm 2 SolveRemLit(F , r)
Require: A CNF formula F
Ensure: A model τ for F , unsatisfiable or give up
FE = PURL(F , r)
if � ∈ FE then

return unsatisfiable
end if

5: (F , τ)=PropUnit(FE)
while F 6= ∅ do

Choose l ∈ C
F ′

= PURL(F ∪ {[l]})
if � ∈ F ′

then
10: return give up

end if
(F ′′

, τ
′
)=PropUnit(F ′

)
(F , τ) = (F ′′

, τ ∪ τ ′
)

end while
15: return τ

Algorithm 3 slur(F) (Single Lookahead Unit Resolution [13, 4]).

Require: A CNF-formula F
Ensure: A truth assignment τ or a message satisfiable or give up

while F 6= ∅ do
choose v ∈var(F)
(F1, τ1)=PropUnit(F , {[v]})
(F2, τ2)=PropUnit(F , {[v]})

5: if � ∈ F1 y � ∈ F2 then
return give up

else
if � ∈ F1 then

(F , τ)=(F2, τ ∪ τ2)
10: else if � ∈ F2 then

(F , τ)=(F1, τ ∪ τ1)
else

choose one of the next branch:
1. (F , τ)=(F1, τ ∪ τ1)

15: 2. (F , τ)=(F2, τ ∪ τ2)
end if

end if
F=PURL(F)

end while
20: return τ

8

Algorithm 4 PURL(F , k)

Require: A CNF formula F ,
Ensure: A formula without kp-removable literals

if k=1 then
return (PURL(F))

else
repeat
remlitfree = true
for all C ∈ F do

for all l ∈ C do
F ′

= PURL(F ∪ U(Flip(C, l)), k − 1)
if � ∈ F ′

then
F = (F − {C}) ∪ ({C − [l]}), remlitfree = false
if � ∈ F then
F = {�}

end if
end if

end for
end for

until F = {�} OR remilitfree = true
return (F)

end if

Lemma 5.1. Let F be a propositional formula and FE = PURL(F , k). Then
F and FE are logically equivalent formulas.

Proof. This result is a consequence of theorem 2.2 because any literal l ∈ C
kp-removable is removable too.

Given a CNF formula, PURL(F , k) searches for kp-removable literals, which
is a particular type of removable literal, and removes them. If the returned for-
mula has the null clause, we know that it is unsatisfiable, otherwise we do not
know nothing about it satisfiability except when this formula belongs to a partic-
ular class of satisfiability like sbwc-sat where it is satisfiable. However, beyond
determining the satisfiability of a formula, it is an important goal achieving a
model to the satisfiable one. Neither PURL(F , k) nor PURL(F) can do this.
This lack motives us linking SLUR and PURL(F , k).

6. Experimental Results

6.1. PURL implementation

This section introduces the framework of our PURL implementation. This
implementation was performed on python and the code is available at w3.ualg.
pt/~jirodrig/purl/purl.zip. Since python is an interpreted language, this
code can run in almost every operating system.

9

Algorithm PURL was presented in section 2 and was designed to test and
exclude p-removable literals from a propositional formula. After running this
algorithm, a simpler logically equivalent formula without p-removable literals
will be reached. For each literal in each clause, the p-removable test is performed
by PropUnit algorithm. Thus, for a efficient implementation of PURL we have
adopted a data structure suitable to avoid multiple copies of data when running
PropUnit.

Each variable (vi) and the positive literal are represented by its integer index,
i, and the negative literal (vi) by negative index, −i. A clause is represented by a
list of literals and a formula by a list of clauses. To address all clauses containing
a specific variable, the implemented data structure include a dictionary. The
keys of this dictionary are variables and for each variable two complete lists of
clauses are linked. One addressing all the clauses containing the positive literal
and other containing the negative literal.

When a literal p-removable literal li ∈ Cj is found, it is excluded from the
Cj and the adjacency list of li updated. If one adjacency list is empty the literal
is pure and can be assigned as true. A literal is also assigned and the data
structure updated when a unit clause is reached. Whenever positive or negative
literal is assigned to true the links of a variable is replaced by true or false
value, respectively. Thus, PURL returns a formula with no unit clauses and a
(partial) truth assignment.

When running algorithm PropUnit the assignments are temporary and must
be repeatedly performed over the actual propositional formula. To avoid mul-
tiple copies of such formulas and undo assignments in constant time we have
create and maintain a list of clause states. Such list is created once when the
propositional formula is loaded and synchronized with the clause list. Each
member of this list is a state of a clause defined from to values. One is an
unique identifier per PropUnit call and the second is list of false literals in the
clause. When a clause is modified by PropUnit the unique identifier is updated
whenever it id is older and the state is set to true if the clause has a true literal
or a list is set with the complemented literal. If there is a clause where the state
include a list of literals with same length of the clause, such clause is false and
the formula not satisfied. If this length is one less then the length of the clause,
one unit clause is reached. Thus, the literal can be identified and assigned as
true. This schema clearly allow undo PropUnit assignments in time constant
as intended.

Tests were performed with the set of instances from SatLib [8] presented in
Table 1. As mentioned before, a python implementation was used to solve those
instances using PURL and SLUR algorithms. For the results shown a P-III800
MHz Windows 2000 machine with 256MB of physical memory was used.

Table 2 present the number of solved instances for each set by algorithm
SLUR and PURL. For most of sets the number of solved instances increase
significatively. The processing time is shown in Table ???

10

Table 1: Data sets from SatLib used in our experimental tests.
Name #inst. #Var #Clauses Comments

aim 72 50 – 200 80 – 1200 48 sat / 24 unsat
ais 4 61 – 265 581 – 5666 all sat
bf 4 1040 – 2177 3434 – 6778 all unsat

bms 500 100 254 – 318 all sat
cbs 1000 100 403 all sat

dubois 12 60 – 300 200 – 800 all unsat
jnh 50 100 800 – 900 16 sat / 34 unsat
rti 500 100 429 all sat
ssa 8 435–10410 1027–34238 4 sat / 4 unsat
uf20 1000 20 91 all sat
uf50 1000 50 218 all sat
uuf50 1000 50 218 all unsat
uf75 100 75 325 all sat
uuf75 100 75 325 all unsat
uf100 1000 100 430 all sat
uuf100 1000 100 430 all sat
uf125 100 125 538 all sat
uuf125 100 125 538 all unsat
uf150 100 150 645 all sat
uuf150 100 150 645 all unsat

6.2. 2PURL implementation

The main diferences from PURL implementation is that to run 2PURL we
need to run PropUnit two times recursively. To avoid multiple copies of data
and undo PropUnit assignments, we take two list of clauses state.

Preprocessing those instances with algorithm 2PURL and applying SLUR
almost of all instances of those sets are completely solve.

7. Conclusions and future work

PURL is a new polynomial time algorithm for SAT. Given a CNF formula,
this algorithm identifies and removes p-removable literals, returning a simplified
formula logically equivalent to the first one. This property drives us to adopt
PURL as a preprocessor algorithm for SAT. Some experimental tests were per-
formed showing that it can be efficient for some sets of SATLIB benchmark
instances (see Table 2).

PURL can also be used to determine satisfiability of some polynomial classes.
Each one of the well known polynomial classes (see Fig. 1) is solvable by PURL
as well as the instances of the map labeling problem US-4P.

It is known that single bend wiring on surfaces is a NP-complete problem [5]
and single bend wiring on the plane can be solved in polynomial time [11]. Now,
we can anticipate that single bend wiring on the cylinder (SBWC) is a prob-
lem which can be solved in polynomial time using the algorithm PURL(F , 2).
This result not yet published, impels us to conjecture that would be a class of
problems to which PURL can be used to efficiently solve them.

For US-4P and SBWC problems, algorithm SolvElimLit(F , r), for r = 1 and
r = 2 respectively, returns a model to each satisfiable instances. In each case, an
adequate method to choose the sequence of literals to assign should be adopted.

11

Table 2: Experimental results obtained by algorithms SLUR(F) and SolvElimLit(F , r), r =
1, 2.

Collection slur(F) purl(F, 1) + slur

Nome #Inst #Sat #UnSat
#Give
up

#Sat #UnSat
#Give
up

Name #inst. #Var #Clauses Comments

aim 72 0 0 72 48 21 3
ais 4 0 0 4 2 0 2
bf 4 0 0 4 0 1 3

bms 500 15 0 485 89 0 411
cbs 1000 104 0 896 726 0 274

dubois 12 0 0 0 0 0 0
jnh 50 1 0 49 14 33 3
rti 500 32 0 468 241 0 259
ssa 8 0 0 8 4 2 2
uf20 1000 590 0 410 0 0 1000
uf50 1000 237 0 763 990 0 10
uuf50 1000 0 0 1000 0 974 26
uf75 100 19 0 81 74 0 26
uuf75 100 0 0 100 0 5 95
uf100 1000 65 0 935 495 0 505
uuf100 1000 0 0 1000 0 0 1000
uf125 100 2 0 98 25 0 75
uuf125 100 0 0 100 0 0 100
uf150 100 0 0 100 19 0 81
uuf150 100 0 0 100 0 0 100

The efficiency of the algorithm PURL(F) (and PURL(F , r)) can be increased
following similar strategies as presented by Zhang and Stickel [15], reducing it
complexity.

References

[1] Cook, S. A., 1971. The complexity of theorem–proving procedures. In: As-
sociation for Computing Machinery (Ed.), Proc. 3rd Ann. ACM Symp. on
Theory of Computing. New York, pp. 151–158.

[2] Dalal, M., Etheringthon, D., 1992. A hierarchy of tractable satisfiability
problems. Information Processing Letters 44 (4), 173–180.

[3] del Val, A., 2000. On 2-sat and renamable horn. In: Proceedings of the Sev-
enteenth National Conference on Artificial Intelligence and Twelfth Con-
ference on Innovative Applications of Artificial Intelligence. AAAI Press /
The MIT Press, pp. 279–284.

[4] Franco, J., van Gelder, A., 2003. A perspective on certain polynomial-time
solvable classes of satisfiability. Discrete Appl. Math. 125 (2-3), 177–214.

[5] Garrido, M. A., Márquez, A., Morgana, A., Portillo, J. R., 2002. Single
bend wiring on surfaces. Discrete and Applied Mathematics 117 (1-3), 27–
40.

[6] Goldberg, E., 2002. Proving unsatisfiability of cnfs locally. J. Autom. Rea-
soning 28 (5), 417–434.

12

Table 3: Experimental results obtained by algorithms SLUR(F) and SolvElimLit(F , r), r =
1, 2.

Collection purl(F, 1) + slur purl(F, 2) + slur

Nome #Inst #Sat #UnSat
#Give
up

#Sat #UnSat
#Give
up

aim 72 48 21 3 48 24 0
ais 4 2 0 2 3 0 1
bf 4 0 1 3 0 4 0

bms 500 89 0 411 382 0 118
cbs 1000 726 0 274 1000 0 0

dubois 12 0 0 12 0 0 12
jnh 50 14 33 3 16 34 0
rti 500 241 0 259 500 0 0
ssa 8 4 2 2 4 4 0
uf20 1000 0 0 1000 – – –
uf50 1000 990 0 10 1000 0 0
uuf50 1000 0 974 26 0 1000 0
uf75 100 74 0 26 100 0 0
uuf75 100 0 5 95 0 100 0
uf100 1000 495 0 505 1000 0 0
uuf100 1000 0 0 1000 0 1000 0
uf125 100 25 0 75 100 0 0
uuf125 100 0 0 100 0 0 100
uf150 100 19 0 81 80 0 20
uuf150 100 0 0 100 0 88 12

[7] Gomes, C., Kautz, H., Sabharwal, A., Selman, B., 2008. Satisfiability
solvers. In: van Harmelen, F., Lifschitz, V., Porter, B. (Eds.), Handbook
of Knowledge Representation. Elsevier.

[8] Hoos, H., Stutzle, T., 2000. Satlib: An online resource for research on sat.
IOS Press, pp. 283–292.

[9] Hoos, H. H., Stutzle, T., 2000. Satlib: An online resource for research on
sat. IOS Press, pp. 283–292.
URL www.satlib.org

[10] Kullmann, O., 2000. Investigations on autark assignments. Discrete Appl.
Math. 107 (1-3), 99–137.

[11] Raghavan, R., Cohoon, J., Sahni, S., 1986. Single bend wiring. Journal of
Algorithms 7 (2), 232–257.

[12] Rodrigues, J., 2009. Sobre algunas clases polinomiales de satisfacibilidad –
aplicaciones a la resolución de problemas geométricos. Ph.D. thesis, Uni-
versidad de Sevilla, Dpto. de Matemática Aplicada I.

[13] Schlipf, J., Annexstein, F., Franco, J., Swaminathan, R., 1995. On finding
solutions for extended horn formulas. Information Processing Letters 54 (3),
133–137.

[14] van Maaren, H., 2000. A short note on some tractable cases of the satisfi-
ability problem. Information and Computation 158 (2), 125–130.

13

[15] Zhang, H., Stickel, M. E., 1996. An efficient algorithm for unit propagation.
In: Proceedings of the Fourth International Symposium on Artificial Intel-
ligence and Mathematics (AI-MATH’96). Fort Lauderdale (Florida USA).
URL citeseer.ist.psu.edu/zhang96efficient.html

14

