AcrdI'EX Software Development Team

AcrdIEX Bundle
eForm Support

D. P. Story

Directory
e Table of Contents
e Begin Article

e APB Documentation
o AcrdI'gX eDucation Bundle Documentation

© 1999-2007 Version 1.2 http://www.acrotex.net
May 9, 2007 dpstory@acrotex.net

http://www.acrotex.net
mailto:dpstory@acrotex.net

Table of Contents

. Introduction

. Package Requirement and Options
2.1. Package Requirements
2.2. Package Options

. Form Fields
3.1. Button Fields
e Push Buttons e Check Boxes e Radio Buttons
3.2. Choice Fields
e List Boxes ¢ Combo Boxes
3.3. Text Fields

. Actions
4.1. Trigger Events
4.2. Action Types

. JavaScript

5.1. Support of JavaScript
e The Convenience Command \JS e Inserting Simple JavaScript e Inserting Com-
plex or Lengthy JavaScript

Appendix
A. The Annotation Flag F
B. Annotation Field flags Ff

Table of Contents (cont.)

C. Supported Key Variables

References

1. Introduction

In this document, we describe the support for form elements in an AcrdlgX document. The
PDF Specifications indicate there are four different categories of fields for a total of seven
types of fields.

1. Button Fields
(a) Push Button
(b) Check Box
(c) Radio Button

2. Choice Fields
(a) List Box
(b) Combo Box

3. Text Fields

4. Signature Fields

The AcrdIEX Bundle does not support signature fields, this leaves six types of fields. Com-
mands for creating each of the remaining six types will be discussed.

The hyperref Package (Rahtz, Oberdiek et al) provides support for the same set of
form fields; however, not all features of these fields can be accessed through the hyperref
commands. I was determined to write my own set of commands which would be sufficiently
comprehensive and extendable to suit all the needs of the AcrdIgX Bundle. All the quiz
environments have been modified to use this new set of form commands, in this way, there
is a uniform treatment of all form fields in the AcrdlEX Bundle.

5

» The demo files for eForm support are eqform.tex, for those using the Acrobat Distiller
to create a PDF document, and eqform_pd.tex, for those who use pdftex or dvipdfm.

2. Package Requirement and Options

Prior to Exerquiz version 5.9, eForms was an integral part of Exerquiz. I’ve now separated
the two, making eForms into a stand-alone package that is called by Exerquiz.

2.1. Package Requirements

The eForms package requires hyperef (a newer version) and insdljs, a package that is part of
the AcrolEX Bundle.

2.2. Package Options

The eForms package has the usual driver options: dvipsone, dvips, pdftex and dvipdfm.
Informing the package what driver you are using is important, because each driver has its
own code that needs to be used to create form fields. For dvips, you should use

\usepackage [dvips] {eforms}

The only other option is preview, this is useful if you use a dvi previewer to view your
document. When preview is taken, a frame box is drawn around any form field created by
eForms, making the position of the field visible in the previewer. This makes it easy to make
any additional adjustments for the position of the field.

A minimal document is

\documentclass{article}
\usepackage [pdftex] {eforms} ¥ <-- specify driver
\begin{document}

% Content containing form fields, such as...

Don’t \pushButton[\CA{Push Me}]{myButton}{}{12bp},

I fall down easily.
\end{document}
The eforms package brings in the hyperref package and passes it the driver, so there is no
need to specify hyperref, usually. If you wish in introduce hyperref yourself with specific
options, place it before eforms.

If you use the exerquiz package, exerquiz brings in the eforms package and passes to it

the driver.

3. Form Fields

The eForm support for AcrdTEX defines six basic (and internal) commands for creating the
six types of form elements. These six are used as “building blocks” for defining all buttons,
check boxes, radio buttons and text fields used in the AcrdI'EX quizzes; and for defining
six user-commands: \listBox, \comboBox, \pushButton, \checkBox, \radioButton and
\textField. These user commands are the topic of the subsequent sections.

Each of the above listed field commands has an optional first parameter that is used to
modify the appearance of the field, and/or to add actions to the field. This is a “local”
capability, i.e., a way of modifying an individual field. There is also a “global” mechanism.
Each field type has its own \everyFieldTypeName command. For example, all buttons

Section 3: Form Fields 7

created by \pushButton can be modified using the \everyPushButton command. See the
sections on Check Boxes and Radio Buttons for examples and additional comments.

» The local modifications—the ones inserted into the field by the first parameter—are read
after the global modifications, in this way, the local modifications overwrites the global ones.

3.1. Button Fields
Buttons are form elements that the user interacts with using only a mouse. There are three

types of buttons: push buttons, check boxes and radio buttons.

e Push Buttons

The push button is a button field that has no value, it is neither on or off. Generally, push
buttons are used to initiate some action, such as JavaScript action.

\pushButton: The command for creating a push button has four arguments

\pushButton [#1] {#2}{#3}{#4}

Parameter Description:
#1 = optional, used to enter any modification of appearance/actions

#2 = the title of the button field
#3 = the width of the bounding rectangle
#4 = the height of the bounding rectangle

Default Appearance: The default appearance of a push button is determined by the
following:

\W{1}\S{B}\F{\FPrint}\BC{0 0 0}
\H{P}\BG{.7529 .7529 .7529}

Section 3: Form Fields 8

Key Variables: The first (optional) parameter can be used to modify the default appear-
ance of a button field and to add some actions. Following is a list of the variables used
within the brackets of this optional argument for the list box: \Ff, \F, \H, \TU, \W, \S,
\R, \BC, \BG, \CA, \RC, \AC, \mkIns, \textFont, \textSize, \textColor, \A, \AA and
\rawPDF. See the Support Key Variables table for descriptions and notes on each of these
variables.

@ If the width argument (#3) is left empty, the WTEX code attempts to determine the ap-
propriate width based on the width of the text given by \CA, \RC and \AC. See Example 2,
below.

Global Modification: \everyPushButton{<key variables>}

Example 1. This example resets all forms in this document:

\pushButton [\CA{Push}\AC{Me}\RC{Reset}\A{/S/ResetForm}]
{myButton}{36bp}{12bp}

Example 2. Button with empty width argument:

\pushButton [\CA{Push}\AC{Me}\RC{Reset}\A{/S/ResetForm}]
{myButton}{}{12bp}

e Check Boxes

A check box is a type of button that has one of two values, “off” or “on”. The value of the
field when the field is “oftf” is 0ff; the value of the “on” state can be defined by the user.

Section 3: Form Fields 9

\checkBox: The command for creating a check box has five parameters
\checkBox [#1]{#2}{#3}{#4}{#5}

Parameter Description:

#1 = optional, used to enter any modification of appearance/actions
#2 = the title of the check box button

#3 = the width of the bounding rectangle

#4 = the height of the bounding rectangle

#5 = the name of the ‘‘on’’ state (the export value)

Default Appearance: The default appearance of a standard check box is determined by
the following:
\W{1}\S{S}\BC{0 0 O}\F{\FPrint}

Key Variables: The first (optional) parameter can be used to modify the default appear-
ance of a check box and to add some actions. Following is a list of the variables used within
the brackets of this optional argument for the list box: \Ff, \F, \TU, \W, \S, \MK, \DA,
\AP, \AS, \R, \textFont, \textSize, \textColor, \DV, \V, \A, \AA and \rawPDF. See the
Supported Key Variables table for descriptions and notes on each of these variables.

Global Modification: \everyCheckBox{<key variables>}

Example 3. Are you married? Yes:
\checkBox[\symbolchoice{circle}]{myCheck}{10bp}{10bp}{On}

In the example, the appearance of this check box was modified through the global modifi-
cation scheme. The following command appears in the preamble of this document:

Section 3: Form Fields 10

\everyCheckBox{
\BC{.690 .769 .871} % border color
\BG{.941 1 .941} % background color

\textColor{l 0 0 rg} % text color
}

e Radio Buttons

A radio button field is similar to a check box, but is meant to be used in unison with one
or more additional radio buttons.

\radioButton: The command for creating a radio button has five parameters
\radioButton [#1]{#2}{#3}{#4}{#5}

Parameter Description:

#1 = optional, used to enter any modification of appearance/actions
#2 = the title of the radio button

#3 = the width of the bounding rectangle

#4 = the height of the bounding rectangle

#5 = the name of the ‘‘on’’ state (the export value)

» A collection of radio buttons meant to be used in unison need to all have the same title
(parameter #2) but different export values (parameter #5).

Default Appearance: The default appearance of a standard radio button is determined
by the following;:
\W{1}\S{SH\BC{0 0 OI\F{\FPrint}

Section 3: Form Fields 11

Key Variables: The first (optional) parameter can be used to modify the default appear-
ance of a radio button and to add some actions. Following is a list of the variables used
within the brackets of this optional argument for the list box: \Ff, \F, \TU, \W, \S, \MK,
\DA, \AP, \AS, \R, \textFont, \textSize, \textColor, \DV, \V, \A, \AA and \rawPDF. See
the Supported Key Variables table for descriptions and notes on each of these variables.

» \Ff Field flags. The values 250606175054appropriate to a radio button are \FfNoToggleTo0
(if set, one radio button must be set at all times) and \FfRadiosInUnison (if set, radio
buttons with the same value will be turned on or off in unison, PDF 1.5).

Global Modification: \everyRadioButton{<key variables>}

Example 4. What is your gender? Male: Female: Neither:

Male: \radioButton{myRadio}{10bp}{10bp}{Male}

Female: \radioButton{myRadio}{10bp}{10bp}{Female}

Neither: \radioButton[\A{\JS{app.alert("You can’t be ’neither’!
I’m resetting the field, guess again!");\r
this.resetForm(["myRadio"])}}]{myRadio}{10bp}{10bp}{Neither}

In the example, the appearance of these radio button fields was modified through the global
modification scheme. The following command appears in the preamble of this document:

\everyRadioButton{
\BC{.690 .769 .871} % border color
\BG{.941 1 .941} % background color
\textColor{0 0 1 rg} % text color
\symbolchoice{star} % check symbol

Section 3: Form Fields 12

3.2. Choice Fields

A choice field is a list of text items, one or more of which can be selected by the user.

e List Boxes

A scrollable list box is a type of choice field in which several of the choices are visible in a
rectangle. A scroll bar becomes available if any of the items in the list are not visible in the
rectangle provided.

\listBox: The command for creating a list box has five arguments, the first of which is
optional.
\listBox [#1]{#2}{#3}{#4}{#5}

Parameter Description:

#1 = optional, used to enter any modification of appearance/actions
#2 = the title of the list box

#3 = the width of the bounding rectangle

#4 = the height of the bounding rectangle

#5 = an array of appearance/values of list.

The fifth parameter needs more explanation. The value of this parameter which defines the
items in the list—their appearance text and their export values—take two forms:

1. An array of arrays:

[(v1) (item1)] [(v2) (item2)]...[(vn) (itemn)]

The first entry in the two member array is the export value of the item, the second is
the appearance text of that item.

Section 3: Form Fields 13

2. An array of strings:

(iteml) (item2) ... (itemn)
In this case, the export value is the same as the appearance text.

Default Appearance: The default appearance of a standard list box is determined by the
following:

\W{1N\S{INF{\FPrint}\BC{0 0 0}

Key Variables: The first (optional) parameter can be used to modify the default ap-
pearance of a list and to add some actions. Following is a list of the variables used
within the brackets of this optional argument for the list box: \Ff, \F, \TU, \W, \S, \R,
\BC, \BG, \mkIns, \textFont, \textSize, \textColor, \DV, \V, \A and \AA. See the
Supported Key Variables table for descriptions and notes on each of these variables.

» \Ff Field flags. Values appropriate to a list box are \FfCommitOnSelChange (commits
immediately after selection, PDF 1.5); \FfSort (sorts'the items); and \FfMultiSelect
(allows more than one value to be selected, PDF 1.4). It is important to note that the flags
\FfMultiSelect and \FfCommitOnSelChange cannot both be in effect. See the Appendix
for a complete list of values for the Ff flag.

Global Modification: \everyListBox{<key variables>}

IThis flag really is not useful unless you have the full Acrobat application, the Sort items check box is
checked in the Options tab of the Fields Properties dialog for the field. Initially, the items are listed in the
same order as listed in the #5 argument; the Acrobat application will sort the list if you view the Fields
Properties for the field and click ‘0k’. Be sure to save the changes.

Section 3: Form Fields

Example 5. List Box (Version 5.0 Required):

\listBox [\autoCenter {n}\DV{11\V{1} Sz
\BG{0.98 0.92 0.73}\BC{0 .6 0} Pants
\AA{\AAKeystroke{Y, Shirt

if (levent.willCommit)app.alert (% Tie

"You chose \\"" + event.change\r

+ "\\""+", which has an export value of "

+ event.changeEx) ; }}]{myList}{1in}{55bp}

{[(1) (Socks)]1[(2) (Shoes)][(3) (Pants)] [(4) (Shirt)][(5) (Tie)1}

e Combo Boxes
A combo box is a drop down list of items that can optionally have an editable text box for

the user to type in a value other than the predefined choices.

\comboBox: The command for creating a combo box has five arguments, the first of which
is optional.
\comboBox [#1]{#2}{#3}{#4}{#5}

Parameter Description:

#1 = optional, used to enter any modification of appearance/actions
#2 = the title of the combo box

#3 = the width of the bounding rectangle

#4 = the height of the bounding rectangle

#5 = an array of appearance/values of list.
The fifth parameter needs more explanation. The value of this parameter which defines the
items in the list—their appearance text and their export values—take two forms:

1. An array of arrays:

Section 3: Form Fields 15
[(v1) (item1)] [(v2) (item2)]...[(vn) (itemn)]
The first entry in the two member array is the export value of the item, the second is
the appearance text of that item.
2. An array of strings:

(iteml) (item2) ... (itemn)
In this case, the export value is the same as the appearance text.

Default Appearance: The default appearance of a standard combo box is determined by
the following:

\W{1\S{I}\F{\FPrint}\BC{0 0 0}

Key Variables: The first (optional) parameter can be used to modify the default ap-
pearance of a list and to add some actions. Following is a list of the variables used
within the brackets of this optional argument for the list box: \Ff, \F, \TU, \W, \S, \R,
\BC, \BG, \mkIns, \textFont, \textSize, \textColor, \DV and \V, \A and \AA. See the
Support Key Variables table for descriptions and notes on each of these variables.

» \Ff Field flags. Values appropriate to a combo box are \FfEdit (allows user to type
in a choice); \FfDoNotSpellCheck (turn spell check off—applicable only if \FfEdit is
set); \FfCommitOnSelChange (commits immediately after selection); and \FfSort (sorts
the items—see footnote 1). See the Appendix for a complete list of values for the Ff flag.

Global Modification: \everyComboBox{<key variables>}

Section 3: Form Fields

Example 6. Editable combo box (Version 5.0): | Socks | Get |

\comboBox [\Ff\FfEdit\DV{1}\V{1}

\BG{0.98 0.92 0.73}\BC{0 .6 0}]{myCombo}{1in}{11bp}

{[(1) (Socks)] [(2) (Shoes)] [(3) (Pants)] [(4) (Shirt)][(5) (Tie)I}\kernlbp/
% Follow up with a pushbutton

\pushButton[\BC{0 .6 0}\CA{Get}\AC{Combo}\RC{Box}\A{\JS{\getComboJS}}]
{myComboButton}{33bp}{11bp}

The JavaScript action for the button is given below:
\begin{defineJS}{\getComboJS}
var f = this.getField("myCombo");
var a = f.currentValuelndices;
if (a==-1)

app.alert("You’ve typed in \\"" + f.value +"\\".");
else

app.alert("Selection: " + f.getItemAt(a, false)

+ " (export value: " + f.getItemAt(a, true)+").");

\end{defineJS}

3.3. Text Fields

A text field is the way a user can enter text into a form.

\textField: The command for creating a text field has four parameters
\textField [#1]{#2}{#3}{#4}

Parameter Description:

#1 = optional, used to enter any modification of appearance/actions
#2 = the title of the text field

16

Section 3: Form Fields 17

#3 = the width of the bounding rectangle

#4 = the height of the bounding rectangle

Default Appearance: The default appearance of a standard text field is determined by
the following:

\F{\FPrint}\BC{0 0 O}\W{1}\S{S}

Key Variables: The first (optional) parameter can be used to modify the default appear-
ance of a list and to add some actions. Following is a list of the variables used within the
brackets of this optional argument for the list box: \Ff, \F, \TU, \Q, \W, \S, \MaxLen, \R,
\BC, \BG, \mkIns, \textFont, \textSize, \textColor, \DV, \V, \A, \AA and \rawPDF. See
the Supported Key Variables table for descriptions and notes on each of these variables.

» \Ff Field flags. There are several values appropriate to a text field: \FfMultiline
(create a multiline text field); \FfPassword (create a password field); \FfFileSelect (select
a file from the local hard drive as the value of the text field, PDF 1.4); \FfDoNotSpellCheck
(automatic spell check is not performed, PDF 1.4); \FfDoNotScroll (disable the scrolling
of long text, this limits the amount of text that can be entered to the width of the text
field provided, PDF 1.4); \FfComb (if set, the text field becomes a comb field, the number
of combs is determined by the value of \MaxLen, PDF 1.5); \FfRichText (allows rich text
to be entered into the text field, PDF 1.5).

Global Modification: \everyTextField{<key variables>}

Example 7. Enter Name: | |

\textField

18

[\BC{0 0 1}\BG{0.98 0.92 0.73}
\textColor{l 0 0 rg}
1{myText}{1.5in}{12bp}

4. Actions

A form field may simply gather data from the user; additionally, it may perform one or more
actions. Actions include execute JavaScript code, going to a particular page in a document,
open a file, execute a menu item, reset a form, play media or a sound, and so on. Beginning
with Acrobat 5.0, most actions can be performed using JavaScript methods.

An action is initiated by a trigger, a field may have many actions, each with a separate
trigger. The different triggers are discussed in Trigger Events, and the various types of
actions available are covered in the section Action Types.

4.1. Trigger Events
Event actions are initiated by triggers. For fields, there are ten different triggers.
1. Mouse Enter: The event is triggered when mouse enters the region defined by the
bounding rectangle. The \AAMouseEnter key is used within the argument of \AA to
define a mouse enter event:

\textField [\AA{\AAMouseEnter{
\JS{app.alert("You’ve entered my text field, get out!")}}}]
{myText}{1.5in}{12bp}

2. Mouse Exit: The event is triggered when mouse exits the region defined by the bound-
ing rectangle. The \AAMouseExit key is used within the argument \AA to define a mouse

Section 4: Actions 19

exit event:

\textField [\AA{\AAMouseExit{
\JS{app.alert("You’ve exited my domain, never return!")}}}]
{myText}{1.5in}{12bp}
3. Mouse Down: The event is triggered when the (left) mouse button is push down while
the mouse is within the bounding rectangle of the field. The \AAMouseDown key is used
within the argument of \AA to define a mouse down event:

\pushButton [\AA{\AAMouseDown{\JS{app.alert ("Mouse Down!")}}}]
{myButton}{30bp}{12bp}

4. Mouse Up: The event is triggered when the (left) mouse button is released while the
mouse is within the bounding rectangle of the field. The \A key (or \AAMouseUp key is
used within the argument of \AA) is used to define a mouse up event:

\pushButton[\A{\JS{app.alert("Mouse Up!")}}]{myButton}{30bp}{12bp}

The same code can be performed as follows:
\pushButton [\AA{\AAMouseUp{\JS{app.alert ("Mouse Up!")}}}]
{myButton}{30bp}{12bp}
When both types of mouse up actions are defined for the same field, the one defined by
\A is the one that is executed.

5. On Focus: The event is triggered when the field comes into focus (either by tab-
bing from another field, or clicking the mouse within the bounding rectangle. The
\AAOnFocus key is used within the argument of \AA to define an ‘on focus’ event:

\textField [\AA{\AAOnFocus{\JS{

Section 4: Actions 20

app.alert("Please enter some data!")}}}]{myText}{1.5in}{12bp}

6. On Blur: The event is triggered when the field loses focus (either by tabbing to another
field, by clicking somewhere outside the field, or (in the case of a text field, for example)
pressing the Enter button. The \AAOnBlur key is used within the argument of \AA to
define an ‘on blur’ event:

\textField [\AA{
\AAOnBlur{\JS{app.alert("Thanks for the data, I think!")}}}]
{myText}{1.5in}{12bp}

7. Format: The format event is the event that occurs when text is entered into a text or
combo box; during this event, optionally defined JavaScript code is executed to format
the appearance of the text within the field. The \AAFormat key is used within the
argument of \AA to define a format event:

\textField [\AA{
\AAKeystroke{AFNumber_Keystroke(2, 0, 1, 0, "\\u0024", true);}
\AAFormat{AFNumber_Format(2, 0, 1, 0, "\\u0024", true);}}]
{myText}{1.5in}{12bp}
The above example creates a text field which will accept only a number into it and
which will format the number into U.S. currency.

8. Keystroke: This keystroke event is the event that occurs when individual keystroke
is entered into a choice field (list or combo) or a text field; during this code, optionally
defined JavaScript can be used to process the keystroke. The \AAKeystroke key is used
within the argument of \AA to define a format event; see the format example above.

9. Validate: The validate event is an event for which JavaScript code can be defined to

Section 4: Actions 21

validate the data that has been entered (text and combo fields only). The \AAValidate
key is used within the argument of \AA to define a validate event:

\textField [\AA{
\AAKeystroke{AFNumber_Keystroke(2, 0, 1, 0, "\\u0024", true);}
\AAFormat{AFNumber_Format(2, 0, 1, 0, "\\u0024", true);}

\AAValidate{%
if (event.value > 1000 || event.value < -1000) {\r\t

app.alert("Invalid value, rejecting your value!");\r\t
event.rc = false;\r
}

}
}H {myText}{1.5in}{12bp}

10. Calculate: The calculate event is an event for which JavaScript code can be defined

to make automatic calculations based on entries of one or more fields (text and combo
fields only). The \AACalculate key is used within the argument of \AA to define a

calculate event:

\textField [\AA{
\AAKeystroke{AFNumber_Keystroke(2, 0, 1, 0, "\\u0024", true);}
\AAFormat{AFNumber_Format(2, 0, 1, 0, "\\u0024", true);}
\AACalculate{AFSimple_Calculate("SUM",new Array("Prices"));}
} {myText}{1.5in}{12bp}

Additional example appear in the file eqforms. tex.

Section 4: Actions 22
4.2. Action Types

The following is only a partial listing of the action types, as given in Table 8.36 of the PDF
Reference [5]. The entire list and the details of usage can be obtain from the PDF Reference.

Action Type Description

GoTo Go to a destination in the current document
GoToR Go to a destination in another document
Launch Launch an application, usually to open a file
URI Resolve a uniform resource identifier

Named Execute an action predefined by the viewer
SubmitForm Send data to a uniform resource locator
JavaScript Execute a JavaScript script (PDF 1.3)

Examples of each type of action follow.

» GoTo: Go to a (named or explicit) destination within the current document. In this
example, we ‘go to’ the named destination toc.1, which references the table of contents

pages. This button goes to a named destination:

\pushButton [\CA{Go}\AC{Now!}\RC{to TOC}

\A{/S/GoTo/D(toc.1)}]{myButton1}{}{10bp}
For a named destination, the value of the /D key is a string, (doc.1) in the above example,
that specifies the destination name.

The following is an example of an explicit destination:

\pushButton[\CA{Go}\AC{Now!}\RC{to Page 3}
\A{/S/GoTo/D[{Page3}/Fit]}]{myButton1}{}{10bp}

Section 4: Actions 23

The value of the destination key /D is an array referencing a page number ({Page3}) and a
view (/Fit).

For a GoTo action, the first entry in the destination array, {Page3}, is an indirect reference
to a page, the notation {Page3} is understood by the distiller. For dvipdfm, use the @page
primitive:

\makeatletter\def\Page#1{@page#1}\makeatother

\pushButton [\CA{Go}\AC{Now!}\RC{to Page 3}
\A{/S/GoTo/D[\Page3/Fit]}]{myButton1}{}{10bp}

pdftex has no mechanism for inserting indirect page references.

See section 8.5.3, ‘Go-To Actions’, of the PDF Reference [5] for details of the syntax of
GoTo, and section 8.2.1 for documentation on explicit and named destinations.

P GoToR: Go to a (named or explicit) destination in a remote document. In this example,
we ‘go to a remote’ destination, a named destination in another document.

\pushButton [\CA{Go}\AC{Now!}\RC{to TOC}
\pushButton [\CA{Go}\AC{Now!}\RC{to TOC}
\A{/S/GoToR/F (webeqtst.pdf)/D(webtoc)]{myButton2}{}{10bp}

This example illustrates an explicit destination; the following button jumps to page 3 in
another document:

\pushButton[\CA{Go}\AC{Now!}\RC{to Page 3}

\A{/S/GoToR/F (webeqtst.pdf)/D[2/Fit]}]{myButton2}{}{10bp}

The value of the destination key /D is an array referencing a page number and a view (/Fit).
For an explicit destination, the PDF Reference [5] specifies that the first entry in the

destination array should be a page number (as contrasted with an indirect reference to a

Section 4: Actions 24

page number, for the case of GoTo). The destination, /D[2/Fit] would correctly work for
distiller, dvipdfm and pdftex.

See section 8.5.3, ‘Remote Go-To Actions’, of the PDF' Reference [5] for details of the
syntax of GoToR, and section 8.2.1 for documentation on explicit and named destinations.

» Launch: Launch an application (‘Open a file’). In this example, we open a TEX file using

the application associated with the .tex extension:

\pushButton[\CA{Go}\AC{Now!}\RC{to TOC}
\A{/S/Launch/F (webeqtst.tex)}] {myButton3}{}{10bp}

See section 8.5.3, ‘Launch Actions’, of the PDF Reference [5] for details of the syntax.

» URI: Open a web link. In this example, we go to the Adobe web site:

\pushButton[\CA{Go}\AC{Adobe! }\RC{To}
\A{/S/URI/URI(http://www.adobe.com/)}] {myButtond}{}{10bp}

See section 8.5.3, ‘URI Actions’, of the PDF Reference [5] for details of the syntax.

» Named: Execute a ‘named’ action (i.e., a menu item). Named actions listed in the PDF
Reference are NextPage, PrevPage, FirstPage and LastPage. A complete list of named

actions can be obtained by executing the the code app.listMenuItems() in the JavaScript
console of Acrobat (Pro).

\pushButton[\CA{Go}\AC{Previous!}\RC{To}
\A{/S/Named/N/PrevPage}] {myButton5}{}{10bp}

See section 8.5.3, ‘Named Actions’, of the PDF Reference [5] for details of the syntax.

http://www.adobe.com/

Section 4: Actions 25

» SubmitForm: Submit forms Action. In this example, we submit a URL to a CGI, which
then sends the requested file back to the browser:

| Homepage of D. P. Story [Gor |

\def\URL{http://www.math.uakron.edu/\noexpand~dpstory}
\comboBox [\DV{\URL}\V{\URL}\BG{0.98 0.92 0.73}\BC{0 .6 0}]
{dest}{1.75inin}{11bp}{%

[(\URL) (Homepage of D. P. Story)]

[(\URL/acrotex.html) (AcroTeX Homepage)]

[(\URL/webeq.html) (AcroTeX Bundle)]

[(\URL/acrotex/examples/webeqtst.pdf) (Exerquiz Demo file (PDF))]
Hkernibp\pushButton[\BC{0 .6 0}\CA{Go!}
\A{/S/SubmitForm/F(http://www.math.uakron.edu/cgi-bin/nph-cgiwrap//%
dpstory/scripts/nph-redir.cgi)/Fields[(dest)]/Flags 4}]
{redirect}{33bp}{11bp}

See section 8.6.4 of the PDF Reference [5] for details of the syntax for ‘Submit Actions’.

» JavaScript: Execute a JavaScript action. This is perhaps the most important type
of action. In this example, the previous example is duplicated using the Doc.getURL()
method, we don’t need to submit to a CGI.

| Homepage of D. P. Story [Gor |

\def\URL{http://www.math.uakron.edu/\noexpand~dpstory}
\comboBox [\DV{\URL}\V{\URL}\BG{0.98 0.92 0.73}\BC{0 .6 0}]
{dest}{1.75inin}{11bp}{¥%

[(\URL) (Homepage of D. P. Story)]

[(\URL/acrotex.html) (AcroTeX Homepage)]

[(\URL/webeq.html) (AcroTeX Bundle)]

26

[(\URL/acrotex/examples/webeqtst.pdf) (Exerquiz Demo file (PDF))]
F\kernibp\pushButton[\BC{0 .6 0}\CA{Go!}
\A{\Js{%

var f = this.getField("dest");\r

this.getURL(f.value,false);
}}1{redirect}{33bp}{11bp}
Note the use of the convenience command \JS, which expands to the correct syntax:
/S/JavaScript/JS(#1), where #1 is the argument of \JS.

Most all actions can be performed using JavaScript, the reader is referred to the Acrobat
JavaScript Scripting Reference [2].

5. JavaScript

Acrobat JavaScript is the cross-platform scripting language of the Acrobat suite of products.
for Acrobat 5.0 or later, Acrobat JavaScript based on JavaScript version 1.5 of ISO-16262
(formerly known as ECMAScript), and adds extensions to the core language to manipulate
Acrobat forms, pages, documents, and even the viewer application.

Web-based references to core JavaScript are the Core JavaScript 1.5 Guide [3] and the
Core JavaScript 1.5 Reference [4]. For Acrobat JavaScript, we refer you to the Acrobat
JavaScript Scripting Guide [1] and the Acrobat JavaScript Scripting Reference [2].

5.1. Support of JavaScript

The AcrdIEX eDucation Bundle has extensive support for JavaScript, not only for JavaScript
executed in response to a field trigger, but for document level and open page actions as well.

Section 5: JavaScript 27

As the topic of this document is eForm support, the reader is referred to the documentation
in the insdljs package, which is distributed with the AcrdlEX Bundle.

® The Convenience Command \JS
The syntax for writing JavaScript actions is
\pushButton[\A{/S/JavaScript/JS(<JavaScript Code>)2}]1{jsEx}{22bp}{11bp}

Notice the code is enclosed in matching parentheses. As noted earlier, AcrdIgX defines the
command \JS as a convenience for this very common actions; the above example becomes:
\pushButton [\A{\JS{<JavaScript Code>}}]1{jsEx}{22bp}{11bp}

The code is now enclosed in matching braces.

e Inserting Simple JavaScript

Actions are introduced into a field command through its optional first parameter. JavaScript
actions, in particular, can be inserted by a mouse up? action, for example, using the \A and
\JS commands.

The “environment” for entering JavaScript is not a verbatim environment: ‘\’ is the
usual TEX escape character and expandable commands are expanded; active characters are
expanded (which is usually not what you want); and primitive commands appear verba-
tim (so you can use, for example, ‘{’ and ‘}). Within the optional argument, the macro
\makeJSspecials, which can be redefined, is expanded; the macro makes several special
definitions: (1) it defines \\ to be ‘\\’; (2) defines \r to be the JavaScript escape sequence
for new line; and (3) defines \t to be the JavaScript escape sequence for tab.

20ther types of possible actions are discussed and illustrated in ‘Actions’ on page 18.

Section 5: JavaScript 28

Example 8.

The verbatim listing for this button is

\pushButton [\CA{Sum}\A{\JIS{%
var n = app.response("Enter a positive integer",
"Summing the first \\"n\\" integers");\r
if (n !'= null) {\r\t
var sum = 0;\r\t
for (var i=1; i <= n; i++) {\r\t\t
sum += i;\r\t

Rr
app.alert("The sum of the first n =" +n
+ " integers is " + sum + ".", 3);

}
}}1{jsSum}{22bp}{11bp}

Code Comments. Within the JavaScript string, we want literal double quotes ", to avoid
" being interpreted as the end of the string (or the beginning of a string) we have to double
escape the double quotes, as in \\". (This is not necessary when entering code in the
JavaScript editor if you have the full Acrobat viewer.) I try to write JavaScript which T am
able to read, edit and debug in the JavaScript editor (available in the full Acrobat viewer
application); for this reason, I’'ve added in new lines and tabbing (\r and \t). Many people,
however, have only the Adobe Reader and cannot see their code to debug it; in this case,
the formatting is really not needed.
Consider the following code

\pushButton[\A{\JS{var x = "~"}}]1{jsTilde}{22bp}{11bp}

Section 5: JavaScript 29

In BTEX, ‘~’ is an active character. JavaScript above appears within the JavaScript editor
as

var x = "protect unhbox voidb@x penalty @M {}"

Not good! Using ‘\~” or ‘\\~ fair no better.
Needless to say, the following sample will not compile because we do not have matching
braces.

\pushButton[\A{\JS{var x = "{"}}]{jsBrace}{22bp}{11bp}

® Inserting Complex or Lengthy JavaScript

For JavaScript that is more complex or lengthy, the insdljs Package, distributed with the
AcrdI'gX Bundle, has the verbatim defineJS environment. Details and idiosyncracies of
this environment are documented in the insdljs Package. The example given in Example 6
will suffice; the verbatim listing is reproduced here for convenience.

» First, we define the JavaScript action and name it \getComboJS for the button (prior to
defining the field, possibly in the preamble, or in style files):

\begin{defineJS}{\getComboJS}
var f = this.getField("myCombo") ;
var a f.currentValueIndices;
if (a==-1)

app.alert("You’ve typed in \\"" + f.value +"\\".");
else

app.alert("Selection: " + f.getItemAt(a, false)

+ " (export value: " + f.getItemAt(a, true)+").");

\end{defineJS}

Section 5: JavaScript 30

There is no need for the \r and \t commands to format the JavaScript; the environment
obeys lines and spaces.

Now we can define our fields, a combo (not shown) and button, in this example. It is
the button that uses the JavaScript defined above.

\pushButton[\BC{0 .6 0}\CA{Get}\AC{Combo}\RC{Box}
\A{\JS{\getComboJS}}] {myComboButton}{33bp}{11bp}

Within the argument of \JS we inset the macro command,
\JS{\getComboButton}

for our JavaScript defined earlier in the defineJS environment

» The demo file definejs.pdf (source definejs.tex) has additional examples of this envi-
ronment.

31

Appendix
A. The Annotation Flag F
The annotation flag F is a bit field that is common to all annotations.

Annotation Flag F

Flag Description
\FHidden hidden field

\FPrint print

\FNoView no view

\FLock locked field (PDF 1.4)

In the user interface for Acrobat, there are four visibility attributes for a form field The table
below is a list of these, and an indication of how each visibility attribute can be attained
through the F.

UI Description Use

Visible (and printable)

Hidden but printable \F{\FNoView}
Visible but doesn’t print \F{-\FPrint}

Hidden (and does not print) \F{\FHidden}\F{-\FPrint}

» All fields created by the eForm commands are printable by default. To remove the
printable attribute, you must say \F{-\FPrint}. This is why \F{-\FPrint} appears in the
table above.

Appendix

B. Annotation Field flags Ff

32

The table below lists some convenience macros for setting the the Ff bit field.

Annotation Field flags Ff

Flag

\FfReadOnly
\FfRequired
\FfNoExport
\FfMultiline
\FfPassword
\FfNoToggleToOff
\FfRadio
\FfPushButton
\FfCombo

\FfEdit

\FfSort
\FfFileSelect
\FfMultiSelect
\FfDoNotSpellCheck
\FfDoNotScroll
\FfComb
\FfRadiosInUnison
\FfCommitOnSelChange

Description

Read only field

Required field (Submit)
Used with Submit Action
For Multiline text field
Password field

Used with Radio Buttons
Radio Button Flag

Push Button Flag
Combo Flag
Edit/NoEdit

Sort, List

File Select (PDF 1.4)
multiple select (PDF 1.4)

Do not spell check (PDF 1.4)

do not scroll (PDF 1.4)
comb field (PDF 1.5)
radios in unison (PDF 1.5)

commit on change (PDF 1.5)

Fields

all

all

all

text

text

Radio only
Radio if set
Pushbuton
choice
combo
choice

text

choice

text, combo
text

text

radio
choice

Appendix 33

Flag Description Fields
\FfRichText rich text (PDF 1.5) text

C. Supported Key Variables

Below is a list of the keys supported for modifying the appearance or for creating an action
of a field. If the default value of a key is empty, e.g., \F£{}, then that key does not appear
in the widget. The Acrobat viewer may have a default when any particular key does not
appear, e.g. \W{} will be interpreted as \W{1} by the viewer.

Supported Key Variables

Key Description Default

Entries common to all annotations:

\F See the annotation F flag Table \F{}

Appendix

Key Description Default
Border Style Dictionary (BS)
\W Width in points around the \W{}
boundary of the field, for example, (same as \W{1})
\w{1}.
\S Line style, values are S (solid), D \s{}
(dashed), B (beveled), I (inset), U
(underlined); \S{B2}
\AA Additional actions, a dictionary. \AA{}

These actions are triggers by mouse
up, mouse down, mouse enter,
mouse exit, on focus, on blur
events; for text and editable combo
boxes there is also the format,
keystroke, validate and calculate
events. The various triggers are
discussed in Trigger Events.

(no actions)

34

Appendix

Key Description Default

\A Action dictionary, use this to define \A{}
JavaScript actions, as well as other (no action)
actions, for mouse up events. See
Trigger Events for a discussion of
the mouse up event.

\Border Used with link annotations, an \Border{0 0 0}
array of three numbers and an (no border)
optional dash array. If all three
numbers are 0, no border is drawn

\AP Appearance dictionary, used mostly \AP{}
in AcrdITEX with check boxes to
define the ‘On’ value.

\AS Appearance state, normally used \AS{}

with check boxes and radio buttons
when there are more than one
appearance. Advanced techniques
only.

35

Appendix

Key Description Default

Entries common to all fields:

\TU Tool tip (PDF 1.3), for example, \TU{}
\TU{Address}

\Ff See the Field flag Ff table; e.g. \Ff{}
\Ff{\FfReadOnly} makes the field
read only.

\DV Default value of a field. This is the \DV{}

value that appears when the field is
reset; e.g., \DV{Name: }.

\V Current value of the field; for \v{}
example, \V{D. P. Story}

Entries specific to a widget annotation:

\H Highlight, used in button fields and \H{}
link annotations. Possible values (same as \H{I})
are N (None), P (Push), 0
(Outline), I (Invert); e.g., \H{P}.

Appearance Characteristics Dictionary (MK)

Appendix

Description

Default

\MK

\R

\BC

\BG

A dictionary that contains the keys
listed below. For all fields the MK
has a template that is filled in
using the keys below; this key is
available only for check boxes and
radio buttons.

Number of degrees the field is to be
rotated counterclockwise. Must be
a multiple of 90 degrees; \R{90}.

The boundary color, a list of 0
(transparent), 1 (gray), 3 (RGB) or
4 (CMYK) numbers between 0 and
1. For example, \BC{1 0 0} is a
red border.

Background color. Color
specification same as \BC

various

\R{}

\BC{}

(transparent)

\BG{}

(transparent)

37

Appendix

Description

Default

\CA

\RC

\AC

\mkIns

Button fields (push, check, radio)
The widget’s normal caption; e.g.
\CA{Push}, in the case of a push
button. For check boxes and radio,
the value of \CA is a code that
indicates whether a check, circle,
square, star, etc. is used. These
codes are introduced through
\symbolchoice

Push button fields only. The roll
over text caption.

Push button fields only. The down
button caption.

A variable for introducing into the
MK dictionary any other key-value
pairs not listed above. Principle
examples are I, RI, IX, IF, TP,
which are used for displaying icons
on a button field. See an example
in the demo file eforms.tex

\CA{}

\RC{}

\AC{}

\mkIns{}

38

Appendix 39

Key Description Default

Entries common to fields containing variable text:

\Q Quadding for text fields. Values are Q{}
0 (left-justified), 1 (centered), 2 (left justified)
(right-justified); e.g., \Q{1}.

Appendix

Key

40

Description Default

Default Appearance (DA)

\DA

\textFont
\textSize

\textColor

Default appearance string of the
text in the widget. Normally, you
just specify text font, size and
color. Can be redefined, advance
techniques needed.

Font to be used to display the text \textFont{Helv}
size in points of the text \textSize{9}

color of the text, there are several \textColor{0 g}
color spaces, including grayscale

and RGB; for example,

\textColor{l 0 O rg}, gives a red

font.

Appendix

41

Key Description Default

Entries specific to text fields:

\MaxLen The maximum length of the text \MaxLen{}
string input into a text field. Used
also with comb fields to set the
number of combs. Example,
\MaxLeng{15}.

Specialized, non-PDF Spec, commands:

\rawPDF If all else fails, you can always \rawPDF{}
introduce key-value pairs through
this variable.

\autoCenter There is a centering code that
attempts to give a pleasant
placement of the field. Say
\autoCenter{n} to turn this off.

Appendix

Key

Description

Default

\symbolchoice

Use this variable to specify what
symbol is to be used with a check
box or radio button. Possible
values are check, circle, cross,
diamond, square and star. Can be
used to globally change the symbol
choice as well; for example,
\symbolchoice{check}, which is
the default value.

42

43
References

[1] Acrobat JavaScript Scripting Guide, Version 6.0., Technical Note #5430, Adobe Sys-
tems, Inc., 2003% 26

[2] Acrobat JavaScript Scripting Reference, Version 6.0., Technical Note #5431, Adobe
Systems, Inc., 2003* 26

[3] Core JavaScript 1.5 Guide Netscape Communications Corporation, 2001° 26

=

Core JavaScript 1.5 Reference Netscape Communications Corporation, 2001° 26

Draft PDF Reference, Version 1.5 Adobe Systems, Inc., 20037 22, 23, 24, 25

<t

Shttp://partners.adobe.com/asn/acrobat/docs. jsp
4nttp://partners.adobe.com/asn/acrobat/docs. jsp
Shttp://developer.netscape.com/docs/manuals/javascript.html
Shttp://developer.netscape.com/docs/manuals/javascript.html
"http://partners.adobe.com/asn/tech/pdf/specifications.jsp

http://partners.adobe.com/asn/acrobat/docs.jsp
http://partners.adobe.com/asn/acrobat/docs.jsp
http://developer.netscape.com/docs/manuals/javascript.html
http://developer.netscape.com/docs/manuals/javascript.html
http://partners.adobe.com/asn/tech/pdf/specifications.jsp

	Table of Contents
	1 Introduction
	2 Package Requirement and Options
	2.1 Package Requirements
	2.2 Package Options

	3 Form Fields
	3.1 Button Fields
	• Push Buttons
	• Check Boxes
	• Radio Buttons

	3.2 Choice Fields
	• List Boxes
	• Combo Boxes

	3.3 Text Fields

	4 Actions
	4.1 Trigger Events
	4.2 Action Types

	5 JavaScript
	5.1 Support of JavaScript
	• The Convenience Command \JS
	• Inserting Simple JavaScript
	• Inserting Complex or Lengthy JavaScript

	 Appendix
	A The Annotation Flag F
	B Annotation Field flags Ff
	C Supported Key Variables

	 References

	myButton:
	myCheck: Off
	myRadio: Off
	myList: [1]
	myCombo: [1]
	myComboButton:
	myText:
	myButton1:
	myButton2:
	myButton3:
	myButton4:
	myButton5:
	dest: [http://www.math.uakron.edu/~dpstory]
	redirect:
	jsSum:

